Near-IR Luminescence of Rare-Earth Ions (Er3+, Pr3+, Ho3+, Tm3+) in Titanate–Germanate Glasses under Excitation of Yb3+
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optical Absorption Properties
3.2. Near-Infrared Luminescence Properties
3.3. Luminescence Decays and Energy Transfer Efficiencies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Chen, B.; Zhang, X.; Zhang, J.; Xu, S.; Li, X.; Wang, Y.; Cao, Y.; Li, L.; Yu, H.; et al. Net Optical Gain Coefficients of Cu+ and Tm3+ Single-Doped and Co-Doped Germanate Glasses. Materials 2022, 15, 2134. [Google Scholar] [CrossRef] [PubMed]
- Marro Bellot, C.; Sangermano, M.; Olivero, M.; Salvo, M. Optical Fiber Sensors for the Detection of Hydrochloric Acid and Sea Water in Epoxy and Glass Fiber-Reinforced Polymer Composites. Materials 2019, 12, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Iscoa, P.; Ojha, N.; Aryal, U.; Pugliese, D.; Boetti, N.G.; Milanese, D.; Petit, L. Spectroscopic Properties of Er3+-Doped Particles-Containing Phosphate Glasses Fabricated Using the Direct Doping Method. Materials 2019, 12, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Dong, H.; Yu, C.; Yang, Q.; Jiao, Y.; Wang, S.; Shao, C.; Hu, L.; Dai, Y. Temperature Dependence of Absorption and Energy Transfer Efficiency of Er3+/Yb3+/P5+ Co-Doped Silica Fiber Core Glasses. Materials 2022, 15, 996. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, T.; Wang, T.; Bao, W.; Zhang, H.; Su, C. Up-conversion luminescence properties of Ho3+-Yb3+ co-doped transparent glass ceramics containing Y2Ti2O7. J. Non Cryst. Solids 2021, 574, 121163. [Google Scholar] [CrossRef]
- Karaksina, E.V.; Kotereva, T.V.; Shiryaev, V.S. Luminescence properties of core-clap Pr-doped Ge-As-Se-Ga (In, I) glass fibers. J. Lumin. 2018, 204, 154–156. [Google Scholar] [CrossRef]
- Su, M.L.; Zhang, Q.; Gao, Y.J.; Wang, D.X.; Chen, C.; Wei, W. Enhanced luminescence of CsPbBr3 nanocrystals-glass composite scintillators based on Ce3+-doped borosilicate glass. J. Lumin. 2022, 242, 118553. [Google Scholar] [CrossRef]
- Yanes, A.C.; del-Castillo, J.; Luis, D.; Puentes, J. Novel Sr2LuF7-SiO2 nano-glass-ceramics: Structure and up-conversion luminescence. J. Lumin. 2016, 170, 789–794. [Google Scholar] [CrossRef] [Green Version]
- Secu, M.; Secu, C.; Bartha, C. Optical Properties of Transparent Rare-Earth Doped Sol-Gel derived Nano-Glass Ceramics. Materials 2021, 14, 6871. [Google Scholar] [CrossRef]
- Zhang, B.; He, F.; Cao, X.; Wei, M.; Zheng, C.; Xie, J. The effect of TiO2 and B2O3 on sintering behavior and crystallization behavior of SrO-BaO-B2O3-SiO2 glass-ceramics. Ceram. Int. 2022, 48, 7013–7023. [Google Scholar] [CrossRef]
- Farouk, M. Effect of TiO2 on the structural, thermal, and optical properties of BaO-Li2O-diborate glasses. J. Non Cryst. Solids 2014, 402, 74–78. [Google Scholar] [CrossRef]
- Dharmar, S.; Gopalakrishnan, R.; Mohan, A. Environmental effect of denitrification of structural glass by coating TiO2. Mater. Today Proc. 2021, 45, 6454–6458. [Google Scholar] [CrossRef]
- Shafaghi, R.; Rodriguez, O.; Phull, S.; Schemitsch, E.H.; Zalzal, P.; Waldman, S.D.; Papini, M.; Towler, M.R. Effect of TiO2 doping on degradation rate, microstructure and strength of borate bioactive glass scaffolds. Mater. Sci. Eng. C 2020, 107, 110351. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, M.A.; John, V.M.; Mocelin, A.; Zilles, R.; Toma, S.H.; Araki, K.; Toma, H.E.; Thomaz, A.C.; Gaylarde, C.C. Effect of silver nanoparticle and TiO2 coatings on biofilm formation on four types of modern glass. Int. Biodeterior. Biodegrad. 2016, 108, 175–180. [Google Scholar] [CrossRef]
- Venkataiah, G.; Babu, P.; Martin, I.R.; Krishnaiah, K.V.; Suresh, K.; Lavin, V.; Jayasankar, C.K. Spectroscopic studies on Yb3+-doped tungsten-tellurite glasses for laser applications. J. Non Cryst. Solids 2018, 479, 9–15. [Google Scholar] [CrossRef]
- Kassab, L.R.P.; Fukumoto, M.E.; Cacho, V.D.D.; Wetter, N.U.; Morimoto, N.I. Spectroscopic properties of Yb3+ doped PbO-Bi2O3-Ga2O3 glasses for IR laser applications. Opt. Mater. 2005, 27, 1576–1582. [Google Scholar] [CrossRef]
- Fu, S.; Shi, W.; Feng, Y.; Zhang, L.; Yang, Z.; Xu, S.; Zhu, X.; Norwood, R.A.; Peyghambarian, N. Review of recent progress on single-frequency fiber lasers. J. Opt. Soc. Am. B 2017, 34, A49–A62. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Li, H. Lasing improvement of Yb3+: Phosphate glass with GeO2 modification. J. Lumin. 2017, 192, 237–242. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, Y.; Shen, X.; Yang, R.; Wei, W. Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses. Opt. Mater. 2018, 75, 1–6. [Google Scholar] [CrossRef]
- Krishnaiah, K.V.; Rajeswari, R.; Kumar, K.U.; Babu, S.S.; Martin, I.R.; Jayasankar, C.K. Spectroscopy and radiation trapping of Yb3+ ions in lead phosphate glasses. J. Quant. Spectrosc. Radiat. Transf. 2014, 140, 37–47. [Google Scholar] [CrossRef]
- Calzavara, F.; Allix, M.; Dussauze, M.; Jubera, V.; Nalin, M.; Cardinal, T.; Fargin, E. Glass forming regions, structure and properties of lanthanum barium germanate and gallate glasses. J. Non Cryst. Solids 2021, 571, 121064. [Google Scholar] [CrossRef]
- Yan, S.; Yue, Y.; Wang, Y.; Diao, Y.; Chen, D.; Zhang, L. Effect of GeO2 on structure and properties of Yb3+: Phosphate glass. J. Non Cryst. Solids 2019, 520, 119455. [Google Scholar] [CrossRef]
- Luo, Y.; Wen, J.; Zhang, J.; Canning, J.; Peng, G.D. Bismuth and erbium optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands. Opt. Lett. 2012, 16, 3447–3449. [Google Scholar] [CrossRef] [PubMed]
- Lisiecki, R.; Ryba-Romanowski, W. Silica-based oxyfluoride glass and glasa-ceramic doped with Tm3+ and Yb3+-VUV-VIS-NIR spectroscopy and optical thermometry. J. Alloys Compd. 2020, 814, 152304. [Google Scholar] [CrossRef]
- Prasanth, M.; Thyagarajan, K.; Venkata Krishnaiah, K.; Ravi, N. 1.5 μm NIR emission property of erbium doped bismuth borate glasses for optical amplifier applications. Mater. Today Proc. 2022, 56, 1935–1938. [Google Scholar] [CrossRef]
- Cai, M.; Zhou, B.; Wang, F.; Tian, Y.; Zhou, J.; Xu, S.; Zhang, J. Highly efficient mid-infrared 2 um emission in Ho3+/Yb3+-codoped germanate glass. Opt. Mater. Express 2015, 5, 1431–1439. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Kowalska, K.; Kuwik, M.; Polak, J.; Pietrasik, E.; Goryczka, T.; Pisarska, J. Novel Multicomponent Titanate-germanate-Glasses: Synthesis, Structure, Properties, Transition Metal, and Rare Earth Doping. Materials 2020, 13, 4422. [Google Scholar] [CrossRef]
- Ding, D.; Gao, J.; Zhang, S.; Duo, L. The photoluminescence properties of Pr3+-Yb3+ co-doped gallo-germanate glasses and glass ceramics as energy transfer. J. Lumin. 2020, 226, 117512. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Ruan, J.; Qiu, J. NIR luminescence form Er-Yb, Bi-Yb and Bi-Nd codoped germanate glasses for optical amplification. J. Alloys Compd. 2009, 476, 878–883. [Google Scholar] [CrossRef]
- Wang, W.C.; Yuan, J.; Liu, X.Y.; Chen, D.D.; Zhang, Q.Y.; Jiang, Z.H. An efficient 1.8 μm emission in Tm3+ and Yb3+/Tm3+ doped fluoride modifier germanate glasses for a diode-pump mid-infrared laser. J. Non Crys. Solids 2014, 404, 19–25. [Google Scholar] [CrossRef]
- Xia, J.; Tian, Y.; Li, B.; Zheng, L.; Jing, X.; Zhang, J.; Xu, S. Enhanced 2.0 μm emission in Ho3+/Yb3+ co-doped silica-germanate glass. Infrared Phys. Technol. 2017, 81, 17–20. [Google Scholar] [CrossRef]
- Sun, Y.; Xin, W.; Meisong, L.; Lili, H.; Guzik, M.; Boulon, G.; Xia, L.; Kuan, P.W.; Weiqing, G.; Wang, T. Compositional dependence of Stark splitting and spectroscopic properties in Yb3+-doped lead silicate glasses. J. Non Cryst. Solids 2020, 532, 119890. [Google Scholar] [CrossRef]
- Dai, N.; Hu, L.; Chen, W.; Boulon, G.; Yang, H.; Dai, S.; Lu, P. Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2-PbO-Na2O-K2O glass. J. Lumin. 2005, 113, 221–228. [Google Scholar] [CrossRef]
- Krasteva, V.M.; Sigel, G.H.; Semjonov, S.L.; Bubnov, M.M.; Belovolov, M.I. Pr3+-Doped Ge-S-I Glasses and Fibers for PDFA Applications. In Optical Amplifiers and Their Applications; Paper FAW10; Optica Publishing Group: Victoria, BC, Canada, 1997. [Google Scholar] [CrossRef]
- Medeiros Neto, J.A.; Taylor, E.R.; Samson, B.N.; Wang, J.; Hewak, D.W.; Laming, R.I.; Payne, D.N.; Tarbox, E.; Maton, P.D.; Roba, G.M.; et al. The application of Ga:La:S-based glass for optical amplification at 1.3 μm. J. Non Cryst. 1995, 184, 292–296. [Google Scholar] [CrossRef]
- Taniguchi, M.M.; Zanuto, V.S.; Portes, P.N.; Malacarne, L.C.; Astrath, N.G.C.; Marconi, J.D.; Belancon, M.P. Glass engineering to enhance Si solar cells: A case study Pr3+-Yb3+ codoped tellurite-tungstate as special converter. J. Non Cryst. Solids 2019, 526, 119717. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Perez, S.; Lahoz, F.; Caceres, J.M.; Lavin, V.; Dilva, I.; Gonzalez-Platas, J.; Martin, I.R. Energy transfer in Pr3+-Yb3+ codoped oxyfluoride glass ceramics. Opt. Mater. 2007, 29, 1231–1235. [Google Scholar] [CrossRef]
- Dan, H.K.; Qiu, J.; Zhou, D.; Jiao, Q.; Wang, R.; Thai, N.L. Super broadband near-infrared emission and energy transfer in Nd-Bi-Er co-doped transparent silicate glass-ceramics. Mater. Lett. 2019, 234, 142–147. [Google Scholar] [CrossRef]
- Klinkov, V.A.; Semencha, A.V.; Aseev, V.A.; Tsimerman, E.A.; Honcharenko, D. The influence of erbium additives on lead-bismuth-gallium glass matrix structure modification. J. Non Cryst. Solids 2020, 547, 120300. [Google Scholar] [CrossRef]
- Lihui, H.; Xingreen, L.; Baojiu, C.; Jiuling, L. Near infrared emission for erbium-doped calcium aluminum silicate glass. Chem. Phys. Lett. 2001, 345, 235–238. [Google Scholar] [CrossRef]
- Shen, S.; Naftaly, M.; Jha, A. Tungsten-tellurite-a host glass for broadband EDFA. Opt. Commun. 2002, 205, 101–105. [Google Scholar] [CrossRef]
- Taherunnisa, S.K.; Krishna Reddy, D.V.; SambasivaRao, T.; Rudramamba, K.S.; Zhydachevskyy, Y.A.; Suchocki, A.; Piasecki, M.; Rami Reddy, M. Effect of up-conversion luminescence in Er3+ doped phosphate glasses for developing Erbium-Doped Fiber Amplifiers (EDFA) and G-LED’s. Opt. Mater. X 2019, 3, 100034. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Grobelny, Ł.; Pisarska, J.; Lisiecki, R.; Ryba-Romanowski, W. Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses. J. Alloys Compd. 2011, 509, 8088–8092. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Janek, J.; Pisarska, J.; Lisiecki, R.; Ryba-Romanowski, W. Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing. Sens. Actuators B Chem. 2017, 253, 85–91. [Google Scholar] [CrossRef]
- Jiao, Y.; Guo, M.; Wang, R.J. Influence of Al/Er ratio on the optical properties and structures of Er3+/Al3+ co-doped silica glasses. Appl. Phys. 2021, 129, 053104. [Google Scholar] [CrossRef]
- Veselsky, K.; Lahti, V.; Petit, L.; Prajzler, V.; Sulc, J.; Jelinkova, H. Influence of Y2O3 Content on Structural, Optical, Spectroscopic, and Laser Properties of Er3+, Yb3+ Co-Doped Phosphate Glasses. Materials 2021, 14, 4041. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Liu, Q.; Liu, X.; Wang, X.; Yang, X.; Liu, Y.; Ying, T.; Renguang, Y.; Zhang, X.; Xu, S. High quantum efficiency of 1.8 um luminescence in Tm3+ fluoride tellurite glass. Infrared Phys. Techn. 2022; in press. [Google Scholar] [CrossRef]
- Li, S.; Song, X.X.; Wang, Y.; Jia, C.L. Structural and photoluminescence properties of Yb/Tm co-implanted ZnO crystals. Phys. B Condens. Matt. 2017, 527, 57–60. [Google Scholar] [CrossRef]
- Pisarska, J.; Lisiecki, R.; Ryba-Romanowski, W.; Dominiak-Dzik, G.; Pisarski, W.A. Up-converted luminescence in Yb–Tm co-doped lead fluoroborate glasses. J. Alloys Compd. 2008, 451, 226–228. [Google Scholar] [CrossRef]
- Babu, P.; Martin, I.R.; Lavin, V.; Rodriguez-Mendoza, U.R.; Seo, H.J.; Krishanaiah, K.V.; Venkatramu, V. Quantum cutting and near-infrared emission in Ho3+/Yb3+ codoped transparent glass-ceramics. J. Lumin. 2020, 226, 117424. [Google Scholar] [CrossRef]
- Reddy, A.S.S.; Purmachand, N.; Kostrzewa, M.; Nrik, M.G.; Venkatramaiah, N.; Ravi Kumar, V.; Veeraiah, N. The role of gold mettalic particles in improving green and NIR emission of Ho3+ ions in non-conventional SeO2 based glass ceramics. J. Non Cryst. Solids 2022, 576, 121240. [Google Scholar] [CrossRef]
- Boyer, J.C.; Vetrone, F.; Capobianco, J.A.; Speghini, A.; Bettinelli, M. Optical transitions and up-conversion properties of Ho3+ doped ZnO-TeO2 glass. J. Appl. Phys. 2003, 93, 9460–9465. [Google Scholar] [CrossRef]
- Wang, M.; Yu, C.; He, D.; Feng, S.; Li, S.; Zhang, L.; Zhang, J.; Hu, L. Enhanced 2 μm emission of Yb-Ho doped fluorophosphate glass. J. Non Crys. Solids 2011, 357, 2447–2449. [Google Scholar] [CrossRef]
- Peng, B.; Izumitani, T. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+, and Tm3+/Ho3+ doped near-infrared laser glasses, sensized by Yb3+. Opt. Mater. 1995, 4, 797–810. [Google Scholar] [CrossRef]
- Wang, M.; Yi, L.; Chen, Y.; Yu, C.; Wang, G.; Hu, L.; Zhang, J. Effect of Al (PO3)3 content on physical, chemical, and optical properties of fluorophosphate glasses for 2 um supplication. Mater. Chem. Phys. 2009, 114, 295–299. [Google Scholar] [CrossRef]
- Tu, L.; Tang, G.; Qian, Q.; Yang, Z. Controllable structural tailoring for enhanced ~2 μm emission in heavily Tm3+-doped germanate glasses. Opt. Lett. 2021, 46, 310–313. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, F.; Chen, Y.; Wang, X.; Sun, K.; Pan, Z. Extending the applications for lanthanide ions: Efficient emitters in short-wave infrared persistent luminescence. J. Mat. Chem. C 2017, 5, 6488–6492. [Google Scholar] [CrossRef]
- Lesniak, M.; Kochanowicz, M.; Baranowska, A.; Golonko, P.; Kuwik, M.; Zmojda, J.; Miluski, P.; Dorosz, J.; Pisarski, W.A.; Pisarska, J.; et al. Structure and Luminescence Properties of Transparent Germanate Glass-Ceramics Co-Doped with Ni2+/Er3+ for Near-Infrared Optical Fiber Application. Nanomaterials 2021, 11, 2115. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, B.; Zhong, H.; Sun, J.; Cheng, L.; Li, X.; Zhang, J.; Tian, Y.; Lu, W.; Wan, J.; et al. Optical Transition, Excitation State Absorption, and Energy Transfer Study of Er3+, Nd3+ Single-Doped, and Er3+/Nd3+ Codoped Tellurite Glasses for Mid-Infrared Laser Applications. J. Am. Ceram. Soc. 2011, 94, 1766–1772. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–173. [Google Scholar] [CrossRef]
τm(ms) | ||||||
---|---|---|---|---|---|---|
TiO2 (mol%) | GeO2:TiO2 | Yb3+ | Yb3+/Pr3+ | Yb3+/Er3+ | Yb3+/Tm3+ | Yb3+/Ho3+ |
10 | 5:1 | 1.21 | 0.63 | 0.65 | 0.70 | 0.83 |
20 | 2:1 | 1.10 | 0.55 | 0.59 | 0.59 | 0.75 |
30 | 1:1 | 1.00 | 0.48 | 0.52 | 0.51 | 0.61 |
40 | 1:2 | 1.91 | 0.44 | 0.51 | 0.51 | 0.56 |
45 | 1:3 | 0.86 | 0.42 | 0.50 | 0.49 | 0.54 |
55 | 1:5 | 0.84 | 0.40 | 0.49 | 0.48 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, K.; Kuwik, M.; Pisarska, J.; Pisarski, W.A. Near-IR Luminescence of Rare-Earth Ions (Er3+, Pr3+, Ho3+, Tm3+) in Titanate–Germanate Glasses under Excitation of Yb3+. Materials 2022, 15, 3660. https://doi.org/10.3390/ma15103660
Kowalska K, Kuwik M, Pisarska J, Pisarski WA. Near-IR Luminescence of Rare-Earth Ions (Er3+, Pr3+, Ho3+, Tm3+) in Titanate–Germanate Glasses under Excitation of Yb3+. Materials. 2022; 15(10):3660. https://doi.org/10.3390/ma15103660
Chicago/Turabian StyleKowalska, Karolina, Marta Kuwik, Joanna Pisarska, and Wojciech A. Pisarski. 2022. "Near-IR Luminescence of Rare-Earth Ions (Er3+, Pr3+, Ho3+, Tm3+) in Titanate–Germanate Glasses under Excitation of Yb3+" Materials 15, no. 10: 3660. https://doi.org/10.3390/ma15103660
APA StyleKowalska, K., Kuwik, M., Pisarska, J., & Pisarski, W. A. (2022). Near-IR Luminescence of Rare-Earth Ions (Er3+, Pr3+, Ho3+, Tm3+) in Titanate–Germanate Glasses under Excitation of Yb3+. Materials, 15(10), 3660. https://doi.org/10.3390/ma15103660