Crystallization Mechanism and Optical Properties of Antimony-Germanate-Silicate Glass-Ceramic Doped with Europium Ions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Differential Scanning Calorimetry
3.2. X-ray Diffraction
3.3. Excitation Spectra
3.4. Luminescence Investigation and Decay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Cao, Z.; Wei, X.; Yin, M.; Chen, Y. Luminescence Properties of Eu3+ Doped YBO3 for Temperature Sensing. J. Rare Earths 2017, 35, 356–360. [Google Scholar] [CrossRef]
- Kang, S.; Dong, G.; Qiu, J.; Yang, Z. Hybrid Glass Optical Fibers-Novel Fiber Materials for Optoelectronic Application. Opt. Mater. X 2020, 6, 100051. [Google Scholar] [CrossRef]
- Klimesz, B.; Lisiecki, R.; Ryba-Romanowski, W. Thermosensitive Tm3+/Yb3+ Co-Doped Oxyfluorotellurite Glasses—Spectroscopic and Temperature Sensor Properties. J. Alloy. Compd. 2020, 823, 153753. [Google Scholar] [CrossRef]
- Milewska, K.; Maciejewski, M.; Synak, A.; Łapiński, M.; Mielewczyk-Gryń, A.; Sadowski, W.; Kościelska, B. From Structure to Luminescent Properties of B2O3-Bi2O3-SrF2 Glass and Glass-Ceramics Doped with Eu3+ Ions. Materials 2021, 14, 4490. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Ren, J.; Lu, X.; Lin, C.; Lin, C.; Jain, R.K.; Jain, R.K. Luminescent Ion-Doped Transparent Glass Ceramics for Mid-Infrared Light Sources [Invited]. Opt. Express OE 2020, 28, 21522–21548. [Google Scholar] [CrossRef]
- Yatskiv, R.; Kostka, P.; Grym, J.; Zavadil, J. Temperature Sensing down to 4 K with Erbium-Doped Tellurite Glasses. J. Non-Cryst. Solids 2022, 575, 121183. [Google Scholar] [CrossRef]
- Yu, B.; Zheng, B.; Xia, H.; Wang, J.; Song, H.; Chen, B. Tunable Emission and Temperature Sensing Performance in Novel Oxyfluoride Borosilicate Glass Ceramics Containing Eu3+/Tb3+: KY3F10 Nanocrystals. Ceram. Int. 2021, 47, 9668–9678. [Google Scholar] [CrossRef]
- Baranowska, A.; Leśniak, M.; Kochanowicz, M.; Żmojda, J.; Miluski, P.; Dorosz, D. Crystallization Kinetics and Structural Properties of the 45S5 Bioactive Glass and Glass-Ceramic Fiber Doped with Eu3+. Materials 2020, 13, 1281. [Google Scholar] [CrossRef] [Green Version]
- Rudenko, M.; Gaponenko, N.; Litvinov, V.; Ermachikhin, A.; Chubenko, E.; Borisenko, V.; Mukhin, N.; Radyush, Y.; Tumarkin, A.; Gagarin, A. Structural Dependent Eu3+ Luminescence, Photoelectric and Hysteresis Effects in Porous Strontium Titanate. Materials 2020, 13, 5767. [Google Scholar] [CrossRef]
- Tian, X.; Ma, Z.; Qiu, J.; Wei, R. Nd3+-Doped Glass-Ceramic Fiber Fabricated by Drawing Precursor Ceramic and Successive Heat Treatment. Ceram. Int. 2022; in press. [Google Scholar] [CrossRef]
- Veber, A.; Lu, Z.; Vermillac, M.; Pigeonneau, F.; Blanc, W.; Petit, L. Nano-Structured Optical Fibers Made of Glass-Ceramics, and Phase Separated and Metallic Particle-Containing Glasses. Fibers 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.N.L.; Chiasera, A.; Lukowiak, A.; Ferrari, M. Eu3+ as a Powerful Structural and Spectroscopic Tool for Glass Photonics. Materials 2022, 15, 1847. [Google Scholar] [CrossRef]
- Ćirić, A.; Stojadinović, S.; Brik, M.G.; Dramićanin, M.D. Judd-Ofelt Parametrization from Emission Spectra: The Case Study of the Eu3+ 5D1 Emitting Level. Chem. Phys. 2020, 528, 110513. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of Europium(III) Spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Hui, Y.; Zhao, Y.; Zhao, S.; Gu, L.; Fan, X.; Zhu, L.; Zou, B.; Wang, Y.; Cao, X. Fluorescence of Eu3+ as a Probe of Phase Transformation of Zirconia. J. Alloys Compd. 2013, 573, 177–181. [Google Scholar] [CrossRef]
- Otsuka, T.; Brehl, M.; Cicconi, M.R.; de Ligny, D.; Hayakawa, T. Thermal Evolutions to Glass-Ceramics Bearing Calcium Tungstate Crystals in Borate Glasses Doped with Photoluminescent Eu3+ Ions. Materials 2021, 14, 952. [Google Scholar] [CrossRef]
- Auzel, F.; Pecile, D.; Morin, D. Rare Earth Doped Vitroceramics: New, Efficient, Blue and Green Emitting Materials for Infrared Up-Conversion. J. Electrochem. Soc. 1975, 122, 101–107. [Google Scholar] [CrossRef]
- Yang, S.; Heyl, H.; Homa, D.; Pickrell, G.; Wang, A. Powder-in-Tube Reactive Molten-Core Fabrication of Glass-Clad BaO-TiO2-SiO2 Glass–Ceramic Fibers. Materials 2020, 13, 395. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Tuomisto, M.; Oksa, J.; Salminen, T.; Lastusaari, M.; Petit, L. Upconversion in Low Rare-Earth Concentrated Phosphate Glasses Using Direct NaYF4:Er3+, Yb3+ Nanoparticles Doping. Scr. Mater. 2017, 139, 130–133. [Google Scholar] [CrossRef]
- Skaudzius, R.; Katelnikovas, A.; Enseling, D.; Kareiva, A.; Jüstel, T. Dependence of the 5D0→7F4 Transitions of Eu3+ on the Local Environment in Phosphates and Garnets. J. Lumin. 2014, 147, 290–294. [Google Scholar] [CrossRef]
- Grigorjevaite, J.; Ezerskyte, E.; Minderyte, A.; Stanionyte, S.; Juskenas, R.; Sakirzanovas, S.; Katelnikovas, A. Optical Properties of Red-Emitting Rb2Bi(PO4)(MoO4):Eu3+ Powders and Ceramics with High Quantum Efficiency for White LEDs. Materials 2019, 12, 3275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Li, X.; Li, J.; Genevois, C.; Ma, B.; Etienne, A.; Wan, C.; Véron, E.; Peng, Z.; Allix, M. Pressureless Glass Crystallization of Transparent Yttrium Aluminum Garnet-Based Nanoceramics. Nat. Commun. 2018, 9, 1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisarska, J.; Kaczmarczyk, B.; Mazurak, Z.; Zelechower, M.; Goryczka, T.; Pisarski, W.A. Influence of P2O5 Concentration on Structural, Thermal and Optical Behavior of Pr-Activated Fluoroindate Glass. Phys. B Condens. Matter 2007, 388, 331–336. [Google Scholar] [CrossRef]
- Santos Barbosa, J.; Batista, G.; Danto, S.; Fargin, E.; Cardinal, T.; Poirier, G.; Castro Cassanjes, F. Transparent Glasses and Glass-Ceramics in the Ternary System TeO2-Nb2O5-PbF2. Materials 2021, 14, 317. [Google Scholar] [CrossRef]
- Ojha, N.; Tuomisto, M.; Lastusaari, M.; Petit, L. Phosphate Glasses with Blue Persistent Luminescence Prepared Using the Direct Doping Method. Opt. Mater. 2019, 87, 151–156. [Google Scholar] [CrossRef]
- Fang, Z.; Zheng, S.; Peng, W.; Zhang, H.; Ma, Z.; Dong, G.; Zhou, S.; Chen, D.; Qiu, J. Ni2+ Doped Glass Ceramic Fiber Fabricated by Melt-in-Tube Method and Successive Heat Treatment. Opt. Express OE 2015, 23, 28258–28263. [Google Scholar] [CrossRef]
- Ballato, J.; Peacock, A.C. Molten Core Optical Fiber Fabrication—A Route to New Materials and Applications. APL Photonics 2018, 3, 120903. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Lu, N.; Yang, Z.; He, G.; Li, X.; Li, J.; Li, J. Synthesis and Crystallization Kinetics of Y2CaAl4SiO12 Garnet-Type Glass-Ceramic. Scr. Mater. 2020, 188, 222–227. [Google Scholar] [CrossRef]
- Ojha, N.; Szczodra, A.; Boetti, N.G.; Massera, J.; Petit, L. Nucleation and Growth Behavior of Er3+ doped Oxyfluorophosphate Glasses. RSC Adv. 2020, 10, 25703–25716. [Google Scholar] [CrossRef]
- Zmojda, J.; Kochanowicz, M.; Miluski, P.; Baranowska, A.; Pisarski, W.A.; Pisarska, J.; Jadach, R.; Sitarz, M.; Dorosz, D. Optical Characterization of Nano- and Microcrystals of EuPO4 Created by One-Step Synthesis of Antimony-Germanate-Silicate Glass Modified by P2O5. Materials 2017, 10, 1059. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Mosquera, J.F.; Nieto-Muñoz, A.M.; Rodrigues, A.C. Precursor Glass Stability, Microstructure and Ionic Conductivity of Glass-Ceramics from the Na1+xAlxGe2–x(PO4)3 NASICON Series. J. Non Cryst. Solids 2019, 513, 36–43. Available online: https://reader.elsevier.com/reader/sd/pii/S0022309319301541?token=1172499F341EDFD317F1C30D4F565807A1EB9067E74C82D6DE929E0D920E77D59F198FB3A2A6B8E1A80AD0346EE66B7D&originRegion=eu-west-1&originCreation=20220502094405 (accessed on 2 May 2022). [CrossRef]
- Šesták, J.; Simon, P. Thermal Analysis of Micro, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics and Thermodynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-90-481-3150-1. [Google Scholar]
- Ragiń, T.; Baranowska, A.; Zmojda, J.; Kochanowicz, M.; Miluski, P.; Mazur, D. Effect of Alkali Content on Spectroscopic Properties of Er/Ag Co-Doped Antimony-Germanate Glasses. In Proceedings of the Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, Wilga, Poland, 3–10 June 2018; Romaniuk, R.S., Linczuk, M., Eds.; SPIE: Wilga, Poland, 2018; p. 16. [Google Scholar]
- Paßlick, C.; Ahrens, B.; Henke, B.; Johnson, J.A.; Schweizer, S. Differential Scanning Calorimetry Investigations on Eu-Doped Fluorozirconate-Based Glass Ceramics. J. Non Cryst. Solids 2010, 356, 3085–3089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrilović, T.; Periša, J.; Papan, J.; Vuković, K.; Smits, K.; Jovanović, D.J.; Dramićanin, M.D. Particle Size Effects on the Structure and Emission of Eu3+:LaPO4 and EuPO4 Phosphors. J. Lumin. 2018, 195, 420–429. [Google Scholar] [CrossRef]
- None Available Materials Data on EuPO4 by Materials Project. 2020. Available online: https://materialsproject.org/materials/mp-3219/ (accessed on 1 May 2022).
- Patra, P.; Annapurna, K. Transparent Tellurite Glass-Ceramics for Photonics Applications: A Comprehensive Review on Crystalline Phases and Crystallization Mechanisms. Prog. Mater. Sci. 2022, 125, 100890. [Google Scholar] [CrossRef]
- Szczodra, A.; Mardoukhi, A.; Hokka, M.; Boetti, N.G.; Petit, L. Fluorine Losses in Er3+ Oxyfluoride Phosphate Glasses and Glass-Ceramics. J. Alloys Compd. 2019, 797, 797–803. [Google Scholar] [CrossRef]
- Zeng, L.; Zhou, J. Analyses of Electric Field-Induced Phase Transformation by Luminescence Study in Eu3+-Doped (Na, K)0.5Bi0.5TiO3 Ceramics. Materials 2020, 13, 1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linganna, K.; Jayasankar, C.K. Optical Properties of Eu3+ Ions in Phosphate Glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, T.K.; Gołębiewska, A.; Płachta, J.; Jarczewski, M.; Ryl, J.; Wasiucionek, M.; Garbarczyk, J.E. Photoluminescence of Partially Reduced Eu2+/Eu3+ Active Centers in a NaF–Al2O3–P2O5 Glassy Matrix with Tunable Smooth Spectra. J. Lumin. 2019, 208, 322–326. [Google Scholar] [CrossRef]
- Gopinath, R.J.M.; Gopi, S.; Simon, S.M.; Saritha, A.C.; Biju, P.R.; Joseph, C.; Unnikrishnan, N.V. Spectroscopic Analysis of Eu3+ doped Silica-Titania-Polydimethylsiloxane Hybrid ORMOSILs. RSC Adv. 2020, 10, 20057–20066. [Google Scholar] [CrossRef]
- Pawlik, N.; Szpikowska-Sroka, B.; Goryczka, T.; Pisarska, J.; Pisarski, W.A. Structural and Photoluminescence Investigations of Tb3+/Eu3+ Co-Doped Silicate Sol-Gel Glass-Ceramics Containing CaF2 Nanocrystals. Materials 2021, 14, 754. [Google Scholar] [CrossRef]
P2O5 Nucleator Concentration | 0.25 mol% | 0.50 mol% | 0.75 mol% | 1.0 mol% | ||||
---|---|---|---|---|---|---|---|---|
2θ | Bht 1 | Aht 2 | Bht | Aht | Bht | Aht | Bht | Aht |
26 | 5.82 | |||||||
28 | 20.66 | 8.26 | ||||||
30 | 12.53 | 16.27 | 14.28 | 15.89 | 22.75 | 30.95 | ||
32 | 11.49 | 15.85 | 16.92 | 27.24 | 43.93 | |||
42 | 65.50 | |||||||
72 | 28.18 |
Transition | Dipole Type | Wavelength Range (nm) | Transition Describes |
---|---|---|---|
7F0 → 5L6 | ED | 390–405 | Most intense transition |
7F0 → 5D2 | ED | 460–470 | Hypersensitive transition |
7F0 → 5D1 | MD | 520–530 | Intensity independent of the environment |
7F1 → 5D1 | ED | 530–540 | Hypersensitive transition |
Transition | Dipole Type | Wavelength Range (nm) | Transition Describes |
---|---|---|---|
5D0 → 7F1 | MD | 585–600 | Intensity largely independent of the environment |
5D0 → 7F2 | ED | 610–630 | Hypersensitive |
5D0 → 7F4 | ED | 680–710 | Sensitive, depend on environment |
Sample | Before Heat Treatment, Excited at 395 nm | After Heat Treatment, Excited at 395 nm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | τ1 [ms] | A2 | τ2 [ms] | τavg. [ms] | R2 | A1 | τ1 [ms] | A2 | τ2 [ms] | τavg [ms] | R2 | |
P0.0 | 0.97 | 0.97 | 0.97 | 0.9998 | 0.99 | 0.94 | 0.94 | 0.9996 | ||||
P0.25 | 0.98 | 0.96 | 0.96 | 0.9997 | 0.63 | 0.72 | 0.72 | 0.9703 | ||||
P0.5 | 0.44 | 0.08 | 0.54 | 1.00 | 0.9437 | 0.9995 | 0.37 | 0.10 | 0.63 | 1.04 | 0.9897 | 0.9997 |
P0.75 | 0.85 | 0.16 | 0.14 | 0.78 | 0.7361 | 0.9996 | 0.58 | 0.14 | 0.43 | 0.24 | 0.1959 | 0.9999 |
P1.0 | 0.89 | 0.22 | 0.09 | 0.64 | 0.3154 | 0.9998 | 0.11 | 0.08 | 0.9 | 0.22 | 0.2140 | 0.9998 |
Sample | Before Heat Treatment, Excited at 465 nm | After Heat Treatment, Excited at 465 nm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | τ1 [ms] | A2 | τ2 [ms] | τavg. [ms] | R2 | A1 | τ1 [ms] | A2 | τ2 [ms] | τavg [ms] | R2 | |
P0.0 | 0.98 | 0.83 | 0.83 | 0.9993 | 0.98 | 0.82 | 0.82 | 0.9994 | ||||
P0.25 | 0.97 | 0.86 | 0.86 | 0.9993 | 0.89 | 0.76 | 0.76 | 0.9975 | ||||
P0.5 | 0.28 | 0.11 | 0.71 | 0.90 | 0.8636 | 0.9998 | 0.91 | 0.81 | 0.81 | 0.9974 | ||
P0.75 | 0.55 | 0.15 | 0.43 | 0.85 | 0.7210 | 0.9998 | 0.82 | 0.16 | 0.77 | 0.54 | 0.4488 | 0.9998 |
P1.0 | 0.64 | 0.20 | 0.35 | 0.85 | 0.6455 | 0.9998 | 0.86 | 0.18 | 0.78 | 0.54 | 0.4432 | 0.9999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golonko, P.; Sadowska, K.; Ragiń, T.; Kochanowicz, M.; Miluski, P.; Dorosz, J.; Kuwik, M.; Pisarski, W.; Pisarska, J.; Leśniak, M.; et al. Crystallization Mechanism and Optical Properties of Antimony-Germanate-Silicate Glass-Ceramic Doped with Europium Ions. Materials 2022, 15, 3797. https://doi.org/10.3390/ma15113797
Golonko P, Sadowska K, Ragiń T, Kochanowicz M, Miluski P, Dorosz J, Kuwik M, Pisarski W, Pisarska J, Leśniak M, et al. Crystallization Mechanism and Optical Properties of Antimony-Germanate-Silicate Glass-Ceramic Doped with Europium Ions. Materials. 2022; 15(11):3797. https://doi.org/10.3390/ma15113797
Chicago/Turabian StyleGolonko, Piotr, Karolina Sadowska, Tomasz Ragiń, Marcin Kochanowicz, Piotr Miluski, Jan Dorosz, Marta Kuwik, Wojciech Pisarski, Joanna Pisarska, Magdalena Leśniak, and et al. 2022. "Crystallization Mechanism and Optical Properties of Antimony-Germanate-Silicate Glass-Ceramic Doped with Europium Ions" Materials 15, no. 11: 3797. https://doi.org/10.3390/ma15113797
APA StyleGolonko, P., Sadowska, K., Ragiń, T., Kochanowicz, M., Miluski, P., Dorosz, J., Kuwik, M., Pisarski, W., Pisarska, J., Leśniak, M., Dorosz, D., & Żmojda, J. (2022). Crystallization Mechanism and Optical Properties of Antimony-Germanate-Silicate Glass-Ceramic Doped with Europium Ions. Materials, 15(11), 3797. https://doi.org/10.3390/ma15113797