Surface Structure of Zirconia Implants: An Integrative Review Comparing Clinical Results with Preclinical and In Vitro Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focused Question
2.2. Search Strategy
2.3. Inclusion Criteria
- Human trials, preclinical and in vitro osteoblastic cell studies investigating zirconia implant surfaces that were published between January 2000 and December 2021;
- Randomized clinical trials or cohort studies with at least 10 patients included [26];
- Details on the surface structure of zirconia and implant manufacturer are given;
- Reported details of marginal bone loss of clinical trials, BIC or RT of preclinical studies, osteoblastic cell behavior (spreading, proliferation, gene expression) for in vitro studies comparing two different zirconia surfaces.
2.4. Exclusion Criteria
2.5. Selection of Studies
2.6. Data Extraction and Outcome Measures
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
- In clinical studies, the lowest MBL was reported for sandblasted and subsequently etched surfaces, followed by a sinter and slurry treatment and sandblasted surfaces;
- In preclinical studies analyzing BIC, no clear preference of one surface structure was observable. The RT was slightly higher for micro-structured than smooth surfaces. The BIC and RT values were highly influenced by the chosen animal model;
- All cell studies showed that cell spreading and cytoskeletal formation were enhanced on machined compared with micro-structured surfaces;
- No correlation was observed between the outcomes, underlining the need for standardized procedures for animal and human studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buser, D.; Janner, S.F.M.; Wittneben, J.-G.; Brägger, U.; Ramseier, C.A.; Salvi, G.E. 10-Year Survival and Success Rates of 511 Titanium Implants with a Sandblasted and Acid-Etched Surface: A Retrospective Study in 303 Partially Edentulous Patients. Clin. Implant. Dent. Relat. Res. 2012, 14, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Ravald, N.; Dahlgren, S.; Teiwik, A.; Gröndahl, K. Long-Term Evaluation of Astra Tech and Brånemark Implants in Patients Treated with Full-Arch Bridges. Results after 12–15 Years. Clin. Oral Implant. Res. 2013, 24, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Östman, P.-O.; Hellman, M.; Sennerby, L. Ten Years Later. Results from a Prospective Single-Centre Clinical Study on 121 Oxidized (TiUniteTM) Brånemark Implants in 46 Patients. Clin. Implant. Dent. Relat Res. 2012, 14, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Stenberg, T. Prospective 10-Year Cohort Study Based on a Randomized Controlled Trial (RCT) on Implant-Supported Full-Arch Maxillary Prostheses. Part 1: Sandblasted and Acid-Etched Implants and Mucosal Tissue. Clin. Implant. Dent. Relat Res. 2012, 14, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Chrcanovic, B.; Östman, P.-O.; Sennerby, L. Initial and Long-Term Crestal Bone Responses to Modern Dental Implants. Periodontol. 2000 2017, 73, 41–50. [Google Scholar] [CrossRef]
- The Osseointegration Book: From Calvarium to Calcaneus. Available online: http://www.quintpub.com/display_detail.php3?psku=BG063#.YYlA7VMxnOQ (accessed on 8 November 2021).
- Abraham, C.M. A Brief Historical Perspective on Dental Implants, Their Surface Coatings and Treatments. Open Dent. J. 2014, 8, 50–55. [Google Scholar] [CrossRef]
- Nobles, K.P.; Janorkar, A.V.; Williamson, R.S. Surface Modifications to Enhance Osseointegration-Resulting Material Properties and Biological Responses. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1909–1923. [Google Scholar] [CrossRef]
- Souza, J.C.M.; Sordi, M.B.; Kanazawa, M.; Ravindran, S.; Henriques, B.; Silva, F.S.; Aparicio, C.; Cooper, L.F. Nano-Scale Modification of Titanium Implant Surfaces to Enhance Osseointegration. Acta Biomater. 2019, 94, 112–131. [Google Scholar] [CrossRef]
- Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Hüttig, F. Surface Characteristics of Dental Implants: A Review. Dent. Mater. 2018, 34, 40–57. [Google Scholar] [CrossRef]
- Wennerberg, A.; Albrektsson, T. Effects of Titanium Surface Topography on Bone Integration: A Systematic Review. Clin. Oral Implant. Res. 2009, 20, 172–184. [Google Scholar] [CrossRef]
- Schünemann, F.H.; Galárraga-Vinueza, M.E.; Magini, R.; Fredel, M.; Silva, F.; Souza, J.C.M.; Zhang, Y.; Henriques, B. Zirconia Surface Modifications for Implant Dentistry. Mater. Sci. Eng. C 2019, 98, 1294–1305. [Google Scholar] [CrossRef]
- Fischer, J.; Schott, A.; Märtin, S. Surface Micro-Structuring of Zirconia Dental Implants. Clin. Oral Implant. Res. 2016, 27, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Pieralli, S.; Kohal, R.-J.; Lopez Hernandez, E.; Doerken, S.; Spies, B.C. Osseointegration of Zirconia Dental Implants in Animal Investigations: A Systematic Review and Meta-Analysis. Dent. Mater. 2018, 34, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, H.; Haro Adanez, M.; Att, W. Current Status of Zirconia Implants in Dentistry: Pre-clinical Tests. J. Prosthodont. Res. 2019, 63, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Balmer, M.; Spies, B.C.; Kohal, R.; Hämmerle, C.H.; Vach, K.; Jung, R.E. Zirconia Implants Restored with Single Crowns or Fixed Dental Prostheses: 5-year Results of a Prospective Cohort Investigation. Clin. Oral Implant. Res. 2020, 31, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Kohal, R.-J.; Spies, B.C.; Vach, K.; Balmer, M.; Pieralli, S. A Prospective Clinical Cohort Investigation on Zirconia Implants: 5-Year Results. J. Clin. Med. 2020, 9, 2585. [Google Scholar] [CrossRef]
- Koller, M.; Steyer, E.; Theisen, K.; Stagnell, S.; Jakse, N.; Payer, M. Two-Piece Zirconia versus Titanium Implants after 80 Months: Clinical Outcomes from a Prospective Randomized Pilot Trial. Clin. Oral Implant. Res. 2020, 31, 388–396. [Google Scholar] [CrossRef] [Green Version]
- Bormann, K.-H.; Gellrich, N.-C.; Kniha, H.; Schild, S.; Weingart, D.; Gahlert, M. A Prospective Clinical Study to Evaluate the Performance of Zirconium Dioxide Dental Implants in Single-Tooth Edentulous Area: 3-Year Follow-Up. BMC Oral Health 2018, 18, 181. [Google Scholar] [CrossRef] [Green Version]
- Hanawa, T. Zirconia versus Titanium in Dentistry: A Review. Dent. Mater. J. 2020, 39, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Sivaraman, K.; Chopra, A.; Narayan, A.I.; Balakrishnan, D. Is Zirconia a Viable Alternative to Titanium for Oral Implant? A Critical Review. J. Prosthodont. Res. 2018, 62, 121–133. [Google Scholar] [CrossRef]
- Han, A.; Tsoi, J.K.H.; Lung, C.Y.K.; Matinlinna, J.P. An Introduction of Biological Performance of Zirconia with Different Surface Characteristics: A Review. Dent. Mater. J. 2020, 39, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. PRISMA-P Group Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO Framework to Improve Searching PubMed for Clinical Questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afrashtehfar, K.I.; Del Fabbro, M. Clinical Performance of Zirconia Implants: A Meta-Review. J. Prosthet. Dent. 2020, 123, 419–426. [Google Scholar] [CrossRef]
- Roehling, S.; Schlegel, K.A.; Woelfler, H.; Gahlert, M. Performance and Outcome of Zirconia Dental Implants in Clinical Studies: A Meta-analysis. Clin. Oral Implant. Res. 2018, 29, 135–153. [Google Scholar] [CrossRef]
- Pieralli, S.; Kohal, R.J.; Jung, R.E.; Vach, K.; Spies, B.C. Clinical Outcomes of Zirconia Dental Implants: A Systematic Review. J. Dent. Res. 2017, 96, 38–46. [Google Scholar] [CrossRef]
- Steyer, E.; Herber, V.; Koller, M.; Végh, D.; Mukaddam, K.; Jakse, N.; Payer, M. Immediate Restoration of Single-Piece Zirconia Implants: A Prospective Case Series-Long-Term Results after 11 Years of Clinical Function. Materials 2021, 14, 6738. [Google Scholar] [CrossRef]
- Roehling, S.; Woelfler, H.; Hicklin, S.; Kniha, H.; Gahlert, M. A Retrospective Clinical Study with Regard to Survival and Success Rates of Zirconia Implants up to and after 7 Years of Loading. Clin. Implant. Dent. Relat Res. 2016, 18, 545–558. [Google Scholar] [CrossRef]
- Borgonovo, A.E.; Censi, R.; Vavassori, V.; Dolci, M.; Calvo-Guirado, J.L.; Delgado Ruiz, R.A.; Maiorana, C. Evaluation of the Success Criteria for Zirconia Dental Implants: A Four-Year Clinical and Radiological Study. Int. J. Dent. 2013, 2013, 463073. [Google Scholar] [CrossRef]
- Cannizzaro, G.; Torchio, C.; Felice, P.; Leone, M.; Esposito, M. Immediate Occlusal versus Non-Occlusal Loading of Single Zirconia Implants. A Multicentre Pragmatic Randomised Clinical Trial. Eur. J. Oral Implantol. 2010, 3, 111–120. [Google Scholar]
- Kohal, R.-J.; Patzelt, S.B.M.; Butz, F.; Sahlin, H. One-Piece Zirconia Oral Implants: One-Year Results from a Prospective Case Series. 2. Three-Unit Fixed Dental Prosthesis (FDP) Reconstruction. J. Clin. Periodontol. 2013, 40, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Kohal, R.-J.; Knauf, M.; Larsson, B.; Sahlin, H.; Butz, F. One-Piece Zirconia Oral Implants: One-Year Results from a Prospective Cohort Study. 1. Single Tooth Replacement. J. Clin. Periodontol. 2012, 39, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Misch, C.E.; Perel, M.L.; Wang, H.-L.; Sammartino, G.; Galindo-Moreno, P.; Trisi, P.; Steigmann, M.; Rebaudi, A.; Palti, A.; Pikos, M.A.; et al. Implant Success, Survival, and Failure: The International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant. Dent. 2008, 17, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payer, M.; Arnetzl, V.; Kirmeier, R.; Koller, M.; Arnetzl, G.; Jakse, N. Immediate Provisional Restoration of Single-Piece Zirconia Implants: A Prospective Case Series—Results after 24 Months of Clinical Function. Clin. Oral Implant. Res. 2013, 24, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Spies, B.C.; Sperlich, M.; Fleiner, J.; Stampf, S.; Kohal, R.-J. Alumina Reinforced Zirconia Implants: 1-Year Results from a Prospective Cohort Investigation. Clin. Oral Implant. Res. 2016, 27, 481–490. [Google Scholar] [CrossRef]
- Spies, B.C.; Balmer, M.; Patzelt, S.B.M.; Vach, K.; Kohal, R.J. Clinical and Patient-Reported Outcomes of a Zirconia Oral Implant: Three-Year Results of a Prospective Cohort Investigation. J. Dent. Res. 2015, 94, 1385–1391. [Google Scholar] [CrossRef]
- Payer, M.; Heschl, A.; Koller, M.; Arnetzl, G.; Lorenzoni, M.; Jakse, N. All-Ceramic Restoration of Zirconia Two-Piece Implants—A Randomized Controlled Clinical Trial. Clin. Oral Implant. Res. 2015, 26, 371–376. [Google Scholar] [CrossRef]
- Balmer, M.; Spies, B.C.; Vach, K.; Kohal, R.-J.; Hämmerle, C.H.F.; Jung, R.E. Three-Year Analysis of Zirconia Implants Used for Single-Tooth Replacement and Three-Unit Fixed Dental Prostheses: A Prospective Multicenter Study. Clin. Oral Implant. Res. 2018, 29, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Jung, R.E.; Grohmann, P.; Sailer, I.; Steinhart, Y.-N.; Fehér, A.; Hämmerle, C.; Strub, J.R.; Kohal, R. Evaluation of a One-Piece Ceramic Implant Used for Single-Tooth Replacement and Three-Unit Fixed Partial Dentures: A Prospective Cohort Clinical Trial. Clin. Oral Implant. Res. 2016, 27, 751–761. [Google Scholar] [CrossRef]
- Gahlert, M.; Kniha, H.; Weingart, D.; Schild, S.; Gellrich, N.-C.; Bormann, K.-H. A Prospective Clinical Study to Evaluate the Performance of Zirconium Dioxide Dental Implants in Single-Tooth Gaps. Clin. Oral Implant. Res. 2016, 27, e176–e184. [Google Scholar] [CrossRef]
- Borgonovo, A.-E.; Fabbri, A.; Vavassori, V.; Censi, R.; Maiorana, C. Multiple Teeth Replacement with Endosseous One-Piece Yttrium-Stabilized Zirconia Dental Implants. Med. Oral Patol. Oral Cir. Bucal. 2012, 17, e981–e987. [Google Scholar] [CrossRef] [PubMed]
- Borgonovo, A.; Censi, R.; Dolci, M.; Vavassori, V.; Bianchi, A.; Maiorana, C. Use of Endosseous One-Piece Yttrium-Stabilized Zirconia Dental Implants in Premolar Region: A Two-Year Clinical Preliminary Report. Minerva Stomatol. 2011, 60, 229–241. [Google Scholar] [PubMed]
- Borgonovo, A.E.; Arnaboldi, O.; Censi, R.; Dolci, M.; Santoro, G. Edentulous Jaws Rehabilitation with Yttrium-Stabilized Zirconium Dioxide Implants: Two Years Follow-up Experience. Minerva Stomatol. 2010, 59, 381–392. [Google Scholar] [PubMed]
- Gahlert, M.; Roehling, S.; Sprecher, C.M.; Kniha, H.; Milz, S.; Bormann, K. In Vivo Performance of Zirconia and Titanium Implants: A Histomorphometric Study in Mini Pig Maxillae. Clin. Oral Implant. Res. 2012, 23, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Bormann, K.-H.; Gellrich, N.-C.; Kniha, H.; Dard, M.; Wieland, M.; Gahlert, M. Biomechanical Evaluation of a Microstructured Zirconia Implant by a Removal Torque Comparison with a Standard Ti-SLA Implant. Clin. Oral Implant. Res. 2012, 23, 1210–1216. [Google Scholar] [CrossRef]
- Gahlert, M.; Röhling, S.; Wieland, M.; Eichhorn, S.; Küchenhoff, H.; Kniha, H. A Comparison Study of the Osseointegration of Zirconia and Titanium Dental Implants. A Biomechanical Evaluation in the Maxilla of Pigs. Clin. Implant. Dent. Relat. Res. 2010, 12, 297–305. [Google Scholar] [CrossRef]
- Gahlert, M.; Röhling, S.; Wieland, M.; Sprecher, C.M.; Kniha, H.; Milz, S. Osseointegration of Zirconia and Titanium Dental Implants: A Histological and Histomorphometrical Study in the Maxilla of Pigs. Clin. Oral Implant. Res. 2009, 20, 1247–1253. [Google Scholar] [CrossRef]
- Thoma, D.S.; Benic, G.I.; Muñoz, F.; Kohal, R.; Sanz Martin, I.; Cantalapiedra, A.G.; Hämmerle, C.H.F.; Jung, R.E. Histological Analysis of Loaded Zirconia and Titanium Dental Implants: An Experimental Study in the Dog Mandible. J. Clin. Periodontol. 2015, 42, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Kohal, R.J.; Bächle, M.; Att, W.; Chaar, S.; Altmann, B.; Renz, A.; Butz, F. Osteoblast and Bone Tissue Response to Surface Modified Zirconia and Titanium Implant Materials. Dent. Mater. 2013, 29, 763–776. [Google Scholar] [CrossRef]
- Schliephake, H.; Hefti, T.; Schlottig, F.; Gédet, P.; Staedt, H. Mechanical Anchorage and Peri-Implant Bone Formation of Surface-Modified Zirconia in Minipigs. J. Clin. Periodontol. 2010, 37, 818–828. [Google Scholar] [CrossRef]
- Park, Y.-S.; Chung, S.-H.; Shon, W.-J. Peri-Implant Bone Formation and Surface Characteristics of Rough Surface Zirconia Implants Manufactured by Powder Injection Molding Technique in Rabbit Tibiae. Clin. Oral Implant. Res. 2013, 24, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Shon, W.-J.; Chung, S.H.; Kim, H.-K.; Han, G.-J.; Cho, B.-H.; Park, Y.-S. Peri-Implant Bone Formation of Non-Thermal Atmospheric Pressure Plasma-Treated Zirconia Implants with Different Surface Roughness in Rabbit Tibiae. Clin. Oral Implant. Res. 2014, 25, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Kohal, R.J.; Wolkewitz, M.; Hinze, M.; Han, J.-S.; Bächle, M.; Butz, F. Biomechanical and Histological Behavior of Zirconia Implants: An Experiment in the Rat. Clin. Oral Implant. Res. 2009, 20, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Thomé, G.; Sandgren, R.; Bernardes, S.; Trojan, L.; Warfving, N.; Bellón, B.; Pippenger, B.E. Osseointegration of a Novel Injection Molded 2-Piece Ceramic Dental Implant: A Study in Minipigs. Clin. Oral Investig. 2021, 25, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Janner, S.F.M.; Gahlert, M.; Bosshardt, D.D.; Roehling, S.; Milz, S.; Higginbottom, F.; Buser, D.; Cochran, D.L. Bone Response to Functionally Loaded, Two-Piece Zirconia Implants: A Pre-clinical Histometric Study. Clin. Oral Implant. Res. 2018, 29, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Liñares, A.; Grize, L.; Muñoz, F.; Pippenger, B.E.; Dard, M.; Domken, O.; Blanco-Carrión, J. Histological Assessment of Hard and Soft Tissues Surrounding a Novel Ceramic Implant: A Pilot Study in the Minipig. J. Clin. Periodontol. 2016, 43, 538–546. [Google Scholar] [CrossRef]
- Chappuis, V.; Cavusoglu, Y.; Gruber, R.; Kuchler, U.; Buser, D.; Bosshardt, D.D. Osseointegration of Zirconia in the Presence of Multinucleated Giant Cells. Clin. Implant. Dent. Relat Res. 2016, 18, 686–698. [Google Scholar] [CrossRef]
- Igarashi, K.; Nakahara, K.; Haga-Tsujimura, M.; Kobayashi, E.; Watanabe, F. Hard and Soft Tissue Responses to Three Different Implant Materials in a Dog Model. Dent. Mater. J. 2015, 34, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Guirado, J.L.; Aguilar-Salvatierra, A.; Delgado-Ruiz, R.A.; Negri, B.; Fernández, M.P.R.; Maté Sánchez de Val, J.E.; Gómez-Moreno, G.; Romanos, G.E. Histological and Histomorphometric Evaluation of Zirconia Dental Implants Modified by Femtosecond Laser versus Titanium Implants: An Experimental Study in Fox Hound Dogs. Clin. Implant. Dent. Relat. Res. 2015, 17, 525–532. [Google Scholar] [CrossRef]
- Kim, H.-K.; Woo, K.M.; Shon, W.-J.; Ahn, J.-S.; Cha, S.; Park, Y.-S. Comparison of Peri-Implant Bone Formation around Injection-Molded and Machined Surface Zirconia Implants in Rabbit Tibiae. Dent. Mater. J. 2015, 34, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Guirado, J.L.; Aguilar-Salvatierra, A.; Gomez-Moreno, G.; Guardia, J.; Delgado-Ruiz, R.A.; Mate-Sanchez de Val, J.E. Histological, Radiological and Histomorphometric Evaluation of Immediate vs. Non-Immediate Loading of a Zirconia Implant with Surface Treatment in a Dog Model. Clin. Oral Implant. Res. 2014, 25, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Stadlinger, B.; Hennig, M.; Eckelt, U.; Kuhlisch, E.; Mai, R. Comparison of Zirconia and Titanium Implants after a Short Healing Period. A Pilot Study in Minipigs. Int. J. Oral Maxillofac. Surg. 2010, 39, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Rocchietta, I.; Fontana, F.; Addis, A.; Schupbach, P.; Simion, M. Surface-Modified Zirconia Implants: Tissue Response in Rabbits. Clin. Oral Implant. Res. 2009, 20, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Sieweke, J.H.; Rodriguez, N.A.; Schüpbach, P.; Lindström, H.; Susin, C.; Wikesjö, U.M.E. Evaluation of Nano-Technology-Modified Zirconia Oral Implants: A Study in Rabbits. J. Clin. Periodontol. 2009, 36, 610–617. [Google Scholar] [CrossRef]
- Depprich, R.; Zipprich, H.; Ommerborn, M.; Naujoks, C.; Wiesmann, H.-P.; Kiattavorncharoen, S.; Lauer, H.-C.; Meyer, U.; Kübler, N.R.; Handschel, J. Osseointegration of Zirconia Implants Compared with Titanium: An in Vivo Study. Head Face Med. 2008, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Gahlert, M.; Gudehus, T.; Eichhorn, S.; Steinhauser, E.; Kniha, H.; Erhardt, W. Biomechanical and Histomorphometric Comparison between Zirconia Implants with Varying Surface Textures and a Titanium Implant in the Maxilla of Miniature Pigs. Clin. Oral Implant. Res. 2007, 18, 662–668. [Google Scholar] [CrossRef]
- Rohr, N.; Bergemann, C.; Nebe, B.J.; Fischer, J. Crystal Structure of Zirconia Affects Osteoblast Behavior. Dent. Mater. 2020, 36, 905–913. [Google Scholar] [CrossRef]
- Bergemann, C.; Duske, K.; Nebe, J.B.; Schöne, A.; Bulnheim, U.; Seitz, H.; Fischer, J. Microstructured Zirconia Surfaces Modulate Osteogenic Marker Genes in Human Primary Osteoblasts. J. Mater. Sci. Mater. Med. 2015, 26, 26. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Bohner, L.; Hanisch, M.; Kleinheinz, J.; Sielker, S. Influence of Implant Material and Surface on Mode and Strength of Cell/Matrix Attachment of Human Adipose Derived Stromal Cell. Int. J. Mol. Sci. 2020, 21, 4110. [Google Scholar] [CrossRef]
- Jung, S.; Bohner, L.; Hanisch, M.; Kleinheinz, J.; Sielker, S. Influence of Implant Material and Surface on Differentiation and Proliferation of Human Adipose-Derived Stromal Cells. Int. J. Mol. Sci. 2018, 19, 4033. [Google Scholar] [CrossRef] [Green Version]
- Setzer, B.; Bächle, M.; Metzger, M.C.; Kohal, R.J. The Gene-Expression and Phenotypic Response of HFOB 1.19 Osteoblasts to Surface-Modified Titanium and Zirconia. Biomaterials 2009, 30, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Ruíz, R.A.; Gomez Moreno, G.; Aguilar-Salvatierra, A.; Markovic, A.; Mate-Sánchez, J.E.; Calvo-Guirado, J.L. Human Fetal Osteoblast Behavior on Zirconia Dental Implants and Zirconia Disks with Microstructured Surfaces. An Experimental in Vitro Study. Clin. Oral Implant. Res. 2016, 27, e144–e153. [Google Scholar] [CrossRef] [PubMed]
- Cionca, N.; Hashim, D.; Mombelli, A. Two-piece zirconia implants supporting all-ceramic crowns: Six-year results of a prospective cohort study. Clin. Oral Implant. Res. 2021, 32, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Rohr, N.; Balmer, M.; Jung, R.E.; Kohal, R.J.; Spies, B.C.; Hämmerle, C.H.F.; Fischer, J. Influence of Zirconia Implant Surface Topography on First Bone Implant Contact within a Prospective Cohort Study. Clin. Implant. Dent. Relat. Res. 2021, 23, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Wennerberg, A.; Albrektsson, T.; Chrcanovic, B. Long-Term Clinical Outcome of Implants with Different Surface Modifications. Eur. J. Oral Implantol. 2018, 11 (Suppl. S1), S123–S136. [Google Scholar]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of Titanium, Titanium Alloy and Zirconia Dental Implants: Current Knowledge and Open Questions. Periodontol. 2000 2017, 73, 22–40. [Google Scholar] [CrossRef]
Author/Year | Publication | Implants (n) | Material | Surface Treatment | Type, Manufacturer | Follow-Up after Placement (yrs) | Survival (%) |
---|---|---|---|---|---|---|---|
Steyer et al. 2021 | [28,35] | 20 (11 evaluated) | Y-TZP | Sandblasted Sa 1.17 µm | WhiteSky, Bredent medical, Germany | 11 | 80.0% |
Kohal et al. 2020 | [17,36,37] | 53 (47 evaluated) | ATZ | sandblasted, sintering of ceramic slurry (Zircapore) Ra 1.8 µm | Ziraldent FR1, Metoxit, Switzerland (now FairWhite, Fairimplant, Germany) | 5 | 94.3% |
Koller et al. 2020 | [18,38] | 16 (14 evaluated) | Y-TZP | sandblasted | Vario z, Ziterion, Germany (now Sirona Dentsply) | 7 | 93.3% |
Balmer et al. 2020 | [16,39,40] | 71 (63 evaluated) | Y-TZP | sandblasted, etched, heat-treated (cer.face 14) Ra 1.2 µm | ceramic.implant, VITA, Germany | 5.5 | 98.4% |
Bormann et al. 2018 | [19,41] | 44 (39 evaluated) | Y-TZP | sandblasted, etched (ZLA) Sa 0.7 µm | Pure, Straumann, Switzerland | 5 | 97.5% |
Roehling et al. 2016 | [29] | 161 (125 evaluated) | Y-TZP | sandblasted | Z-Lock3, Z-Systems, Switzerland | 5.9 | 77.3% |
Kohal et al. 2013 | [32] | 56 (55 evaluated) | Y-TZP | porous sintered zirconia slurry (Zircapore) Sa 1.24 µm | ZiUnite, Nobel Biocare, Sweden | 1 | 98.2% |
Borgonovo et al. 2013 | [30,42,43,44] | 35 (28 evaluated) | Y-TZP | Sandblasted Sa 0.9–1 µm | WhiteSky, Bredent medical, Germany | 4 | 100% |
Kohal et al. 2012 | [33] | 66 (63 evaluated) | Y-TZP | porous sintered zirconia slurry (Zircapore) Sa 1.24 µm | ZiUnite, Nobel Biocare, Sweden | 1 | 95.4% |
Cannizaro et al. 2010 | [31] | 40 (40 evaluated) | Y-TZP | sandblasted | Z-Lock3, Z-Systems, Switzerland | 1 | 87.5% |
Author/Year | Publication | Animal | Material | Surface Treatment | Manufacturer | Observation (wks) | BIC (%) | RT (Ncm) |
---|---|---|---|---|---|---|---|---|
Thomé et al. 2021 | [55] | Pig n = 6 | Y-TZP | Injection-molded, sandblasted, etched (ZLA) Sa 0.76 µm | Neodent Zi ceramic implant, Straumann, Switzerland | 8 | 77.8 ± 6.9 | - |
Janner et al. 2018 | [56] | Dog n = 5 | Y-TZP | Sandblasted, etched | Straumann, Switzerland | 10, 22 | 75.6 ± 6.3, 71.2 ± 7.0 | - |
Linares et al. 2016 | [57] | Pig n = 6 | Y-TZP | Sandblasted, etched | Straumann, Switzerland | 8 | 86.2 ± 9.7 | - |
Chappuis et al. 2016 | [58] | Pig n = 7 | Y-TZP | Sandblasted, etched Sa 0.9 µm | Zerafil TZP, Dentalpoint, Switzerland | 4, 8 | 64.4, 60.9 | - |
Igarashi et al. 2015 | [59] | Dog n = 5 | Y-TZP | Machined Ra 0.11 µm | TZ-3YS-E, Tosoh Corporation, Japan | 12 | 62.7 | - |
Thoma et al. 2015 | [49] | Dog n = 6 | Y-TZP | Sandblasted, etched, heat-treated (cer.face 14) | VITA, Germany | 48 | 87.7 ± 25.1 | - |
ATZ | Sandblasted, sintering of ceramic slurry (Zircapore) | Metoxit, Switzerland | 78.6 ± 17.3 | |||||
Calvo-Guirado et al. 2015 | [60] | Dog n = 6 | Y-TZP | Laser modification | Bredent, Germany | 4, 12 | 44.7 ± 17.7, 47.9 ± 16.2 | - |
Kim et al. 2015 | [61] | Rabbit n = 16 | Y-TZP | Machined Sa 0.58 µm | Dentime, South Korea | 4 | - | 19.4± 7.4 |
Injection-molded Sa 1.67 µm | Cetatech, South Korea | 57.6± 11.6 | ||||||
Calvo-Guirado et al. 2014 | [62] | Dog n = 6 | Y-TZP | Laser modification | Bredent, Germany | 4, 12 | 38.9 ± 6.7, 65.0 ± 4.7 | - |
Shon et al. 2014 | [53] | Rabbit n = 25 | Y-TZP | Injection-molded Smooth Sa 0.54 µm | Cetatech, South Korea | 4 | 58.3 ± 10.1 | 39.7 ± 11.7 |
Injection-molded Rough Sa 1.98 µm | 56.9 ± 13.0 | 59.2 ± 12.3 | ||||||
Kohal et al. 2013 | [50] | Rat n = 56 | Y-TZP | Sandblasted, etched, heat-treated (cer.face 14) Sa 0.95 µm | VITA, Germany | 2, 4 | 17.6 ± 1.4, 33.5 ± 4.1 | - |
Machined Sa 0.19 µm | 30.9 ± 10.1, 46.6 ± 13.9 | |||||||
Park et al. 2013 | [52] | Rabbit n = 20 | Y-TZP | Injection-molded Smooth Sa 0.53 µm | Chaorum, South Korea | 4 | 61.6 ± 12.4 | 44.3 ± 8.4 |
Injection-molded Rough Sa 2.00 µm | 64.4 ± 11.5 | 64.4 ± 10.5 | ||||||
Gahlert et al. 2012 | [45] | Pig n = 18 | Y-TZP | Injection-molded, etched Sa 0.63 µm | Straumann, Switzerland | 4, 8, 12 | 70.0 ± 14.5, 67.1 ± 21.1, 68.3 ± 22.8 | - |
Bormann et al. 2012 | [46] | - | 109.0 ± 24.2, 97.4 ± 29.3, 139.6 ± 56.6 | |||||
Schliephake et al. 2010 | [51] | Pig n = 12 | Y-TZP | Sandblasted Sa 1.0 µm | Thommen Medical, Switzerland | 4, 13 | 57.5 ± 14.3, 54.6 ± 17.6 | 55.9 ± 18.4, 99.4 ± 30.9 |
Sandblasted, etched Sa 1.2 µm | 69.3 ± 17.1, 57.6 ± 23.7 | 69.3 ± 17.1, 100.3 ± 47.0 | ||||||
Stadlinger et al. 2010 | [63] | Pig n = 7 | Y-TZP | Sandblasted Ra 1.0 µm | Bredent, Germany | 4 | 50.3 ± 17.9 | - |
Gahlert et al. 2010 | [47] | Pig n = 16 | Y-TZP | Injection-molded, etched Sa 0.59 µm | Straumann, Switzerland | 4, 8, 12 | - | 42.4 ± 15.1, 69.6 ± 25.1, 69.3 ± 24.2 |
Gahlert et al. 2009 | [48] | 27.1 ± 3.5, 51.9 ± 14.0, 51.1 ± 12.4 | - | |||||
Kohal et al. 2009 | [54] | Rat n = 28 | Y-TZP | Machined Ra 0.13 µm | Metoxit, Switzerland | 2, 4 | 30.9, 46.6 | - |
Sintering of ceramic slurry Ra 0.36 µm | 45.3, 59.4 | |||||||
Rocchietta et al. 2009 | [64] | Rabbit n = 18 | Y-TZP | Sintering of ceramic slurry Sa 1.24 µm | Zi-Unite, Nobel Biocare, Sweden | 3 | 27.5 ± 54.5 | 28.9 ± 8.7 |
Lee et al. 2009 | [65] | Rabbit n = 20 | Y-TZP | Sintering of ceramic slurry Ra 1.0 µm | Zi-Unite, Nobel Biocare, Sweden | 3, 6 | 70.5 ± 3.1, 69.7 ± 5.7 | - |
Depprich et al. 2008 | [66] | Pig n = 12 | Y-TZP | Etched Sa 0.60 µm | Konus Dental Implants, Germany | 1, 4, 12 | 35.3 ± 10.8, 45.3 ± 15.7, 71.4 ± 17.8 | - |
Gahlert et al. 2007 | [67] | Pig n = 13 | Y-TZP | Sandblasted Sa 0.56 µm | Metoxit, Switzerland Straumann, Switzerland | 4, 8, 12 | 40.5 | |
Machined Sa 0.13 µm | 25.9 |
Author/Year | Publication | Cell Type | Material | Surface Treatment | Manufacturer | Cell Spreading | Cell Proliferation | Gene Expression |
---|---|---|---|---|---|---|---|---|
Rohr et al. 2020 | [68] | MG-63 | Y-TZP | Machined, polished, sandblasted, etched (cer.face 14) | Vita, Germany | Significantly higher for machined and polished surfaces than sandblasted, etched zirconia after 20 min and 24 h | - | No significant difference in gene expression of ALP, COL and OCN for all surfaces after 24 h and 3 d |
Jung et al. 2020 | [70] | hOB | Y-TZP | Machined, sandblasted, etched (ZLA) | Straumann, Switzerland | Enhanced cell spreading visualized with actin staining on machined surface compared with sandblasted, etched surface | - | Gene expression of ACTB and fibronectin upregulated and Vimentin, VCL and focal adhesion kinase and laminin downregulated of hOB cells on sandblasted, etched surface compared with machined surface after 7 and 14 d |
Jung et al. 2018 | [71] | hOB | Y-TZP | Machined, Sandblasted, etched (ZLA) | Straumann, Switzerland | - | Cell viability and proliferation higher on sandblasted, etched surface compared with machined surface after 14 d | Gene expression of osteoprotegerin upregulated, RUNX2 downregulated, osteopontin similar on sandblasted, etched surface compared with machined surface after 7 and 14 d |
Delgado-Ruiz et al. 2016 | [73] | hFOB 1.19 | Y-TZP | Sandblasted, sandblasted, laser-modified | Bredent, Germany | Cell spreading comparable observed in SEM | Higher cell density on sandblasted, laser-modified surface than on sandblasted after 7 and 15 d | Higher alkaline phosphatase on sandblasted, laser-modified surface than on sandblasted surface after 7 and 15 d |
Bergemann et al. 2015 | [69] | hOB | Y-TZP | Machined, sandblasted, etched (cer.face 14) | Vita, Germany | Significantly higher for machined than sandblasted, etched zirconia after 24 h | - | No significant difference in gene expression of alkaline phosphatase, collagen for both surfaces after 24 h and 3 d, osteocalcin after 24 h similar and significantly higher for cer.face 14 after 3 d |
Kohal et al. 2013 | [50] | hFOB 1.19 | Y-TZP | Machined, sandblasted, etched | Vita, Germany | Cytoskeletal organization and focal contact formation faster on machined than sandblasted, etched surface | Similar cell proliferation between 1 and 28 d on both surfaces | No conclusive results on gene expression of BMP7, collagen, integrins, proteoglycans and osteocalcin |
Setzer et al. 2009 | [72] | hFOB 1.19 | ATZ | machined; porous sintered zirconia slurry (Zircapore), | Nobel Biocare, Sweden | Cell spreading and cytoskeleton formation enhanced on machined surface compared with Zircapore surface after 4 and 24 h | Proliferation higher on machined surface compared with Zircapore surface after 1, 3 and 7 d | No conclusive results on gene expression of a wide range of proliferation, maturation, mineralization and cell cycle genes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rohr, N.; Hoda, B.; Fischer, J. Surface Structure of Zirconia Implants: An Integrative Review Comparing Clinical Results with Preclinical and In Vitro Data. Materials 2022, 15, 3664. https://doi.org/10.3390/ma15103664
Rohr N, Hoda B, Fischer J. Surface Structure of Zirconia Implants: An Integrative Review Comparing Clinical Results with Preclinical and In Vitro Data. Materials. 2022; 15(10):3664. https://doi.org/10.3390/ma15103664
Chicago/Turabian StyleRohr, Nadja, Blerta Hoda, and Jens Fischer. 2022. "Surface Structure of Zirconia Implants: An Integrative Review Comparing Clinical Results with Preclinical and In Vitro Data" Materials 15, no. 10: 3664. https://doi.org/10.3390/ma15103664
APA StyleRohr, N., Hoda, B., & Fischer, J. (2022). Surface Structure of Zirconia Implants: An Integrative Review Comparing Clinical Results with Preclinical and In Vitro Data. Materials, 15(10), 3664. https://doi.org/10.3390/ma15103664