Shear Capacity Evaluation of the Recycled Concrete Beam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Shear Capacity Test by Four-Point Bending
2.3. The Calculation Formulas for Shear Capacity
2.3.1. ACI Computation Formula (ACI 318M-14)
2.3.2. EN 1992-1-1
2.3.3. GB50010-2010 (China)
2.3.4. Computation Formula by Truss-Arch Model
2.3.5. Computation Formula of Reference
2.3.6. Computation Formula Proposed by Bažant
2.3.7. Computation Formula Based on Modified Pressure Field Theory
2.3.8. Computation Formula Proposed by Luo
2.3.9. Computation Formula Based on Fracture Mechanics
3. Analysis and Comparison of Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elzanaty, A.H.; Nilson, A.H. Shear capacity of prestressed concrete beams using high-strength concrete. J. Proc. 1986, 83, 359–368. [Google Scholar]
- Salandra, M.A.; Ahmad, S.H. Shear capacity of reinforced lightweight high-strength concrete beams. Struct. J. 1989, 86, 697–704. [Google Scholar]
- Malek, A.M.; Saadatmanesh, H. Ultimate shear capacity of reinforced concrete beams strengthened with web-bonded fiber-reinforced plastic plates. ACI Struct. J. 1998, 95, 391–399. [Google Scholar]
- Li, A.; Diagana, C.; Delmas, Y. CRFP contribution to shear capacity of strengthened RC beams. Eng. Struct. 2001, 23, 1212–1220. [Google Scholar] [CrossRef]
- Han, B.C.; Yun, H.D.; Chung, S.Y. Shear capacity of reinforced concrete beams made with recycled-aggregate. Spec. Publ. 2001, 200, 503–516. [Google Scholar]
- Majdzadeh, F.; Soleimani, S.M.; Banthia, N. Shear strength of reinforced concrete beams with a fiber concrete matrix. Can. J. Civ. Eng. 2006, 33, 726–734. [Google Scholar] [CrossRef]
- Sadati, S.; Arezoumandi, M.; Khayat, K.H.; Jeffery, S.V. Shear performance of reinforced concrete beams incorporating recycled concrete aggregate and high-volume fly ash. J. Clean. Prod. 2016, 115, 284–293. [Google Scholar] [CrossRef]
- Colajanni, P.; La Mendola, L.; Mancini, G.; Recupero, A.; Spinella, N. Shear capacity in concrete beams reinforced by stirrups with two different inclinations. Eng. Struct. 2014, 81, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Han, S.J.; Kim, K.S.; LaFave, J.M. Shear capacity of steel fiber-reinforced concrete beams. Struct. Concr. 2017, 18, 278–291. [Google Scholar] [CrossRef]
- Ahmadi, M.; Kheyroddin, A.; Dalvand, A.; Kioumarsi, M. New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams. Constr. Build. Mater. 2020, 234, 117293. [Google Scholar] [CrossRef]
- Naderpour, H.; Haji, M.; Mirrashid, M. Shear capacity estimation of FRP-reinforced concrete beams using computational intelligence. Structures 2020, 28, 321–328. [Google Scholar] [CrossRef]
- Ly, H.B.; Le, T.T.; Vu, H.L.T.; Tran, V.W.; Le, L.M.; Pham, B.T. Computational hybrid machine learning based prediction of shear capacity for steel fiber reinforced concrete beams. Sustainability 2020, 12, 2709. [Google Scholar] [CrossRef] [Green Version]
- Kamgar, R.; Bagherinejad, M.H.; Heidarzadeh, H. A new formulation for prediction of the shear capacity of FRP in strengthened reinforced concrete beams. Soft Comput. 2020, 24, 6871–6887. [Google Scholar] [CrossRef]
- Prayogo, D.; Cheng, M.Y.; Wu, Y.W.; Tran, D.H. Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams. Eng. Comput. 2020, 36, 1135–1153. [Google Scholar] [CrossRef]
- Wang, J.Q.; Qi, J.N. Unified computation method of shear capacity of reinforced concrete beams with and without web reinforcement. China Civ. Eng. J. 2013, 7, 47–57. [Google Scholar]
- Bazant, Z.P.; Yu, Q. Designing against size effect on shear strength of reinforced concrete beams without stirrups: Verfication and Calibration. ASCE J. Struct. Eng. 2005, 131, 1886–1897. [Google Scholar] [CrossRef]
- BaZant, Z.P.; Kim, J.K. Size effect in shear failure of longitudinally reinforced concrete beams. ACI J. 1984, 64, 128–141. [Google Scholar]
- Bazant, Z.P.; Yu, Q. Design against size effect on shear strength of reinforced concrete beams without stirrups—Ⅰ: Formulation. ACI Struct. J. 2005, 131, 1877–1885. [Google Scholar]
- Luo, L.; Wang, Q. Shear strength formula for reinforced concrete beams without web reinforcements against size effect. Appl. Math. Mech. 2013, 34, 606–619. [Google Scholar]
- Etxeberria, M.; Mari, A.R.; Vazquez, E. Recycled aggregate concrete as structural material. Mater. Struct. 2007, 40, 529–541. [Google Scholar]
- Gonzalez-Fonteboa, B.; Martinez-Abella, F. Shear strength of recycled concrete beams. Constr. Build. Mater. 2007, 21, 887–893. [Google Scholar] [CrossRef]
- Zhou, J.H.; Jiang, H. Shear behavior of recycled coarse aggregate concrete beams. J. Shenyang Archit. Univ. Nat. Sci. Ed. 2009, 25, 683–688. [Google Scholar]
- Choi, H.B.; Yi, C.K.; Cho, H.H.; Kang, K.I. Experimental study on the shear strength of recycled aggregate concrete beams. Mag. Concr. Res. 2010, 62, 103–114. [Google Scholar] [CrossRef]
- Zhou, B.B.; Sun, W.M.; Guo, Z.G.; Qu, H.M.; Cao, Q.T.; Liu, J.L. Experimental study on shear capacity of recycled concrete beams. Build. Sci. Res. Sichuan 2009, 35, 16–18. [Google Scholar]
- Wu, J.; Ding, D.F.; Zhang, W. Experimental study on shear behavior of recycled aggregate concrete beams. J. Hehai Univ. Nat. Sci. Ed. 2010, 38, 83–86. [Google Scholar]
- Fathifazl, G.B.B.S.; Razaqpur, A.G.; Isgor, O.B.; Abbas, A.; Fournier, B.; Foo, S. Shear strength of reinforced recycled concrete beams without stirrups. Mag. Concr. Res. 2009, 61, 477. [Google Scholar] [CrossRef]
- Fathifazl, G.; Razaqpur, A.G.; Isgor, O.B.; Abbas, A.; Fournier, B.; Foo, S. Shear capacity evaluation of steel reinforced recycled concrete (RRC) beams. Eng. Struct. 2011, 33, 1025–1033. [Google Scholar] [CrossRef]
- Zsutty, T. Beam shear strength prediction by analysis of existing data. ACI Struct. J. 1968, 65, 943–951. [Google Scholar]
- Katkhuda, H.; Shatarat, N. Shear behavior of reinforced concrete beams using treated recycled concrete aggregate. Constr. Build. Mater. 2016, 125, 63–71. [Google Scholar] [CrossRef]
- Arezoumandi, M.; Smith, A.; Volz, J.S.; Khayat, K.H. An experimental study on shear strength of reinforced concrete beams with 100% recycled concrete aggregate. Constr. Build. Mater. 2014, 53, 612–620. [Google Scholar] [CrossRef]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI318M-14) and Commentary (ACI 318RM-14); American Concrete Institute (ACI): Farmington Hills, MI, USA, 2014. [Google Scholar]
- European Committee for Standardization. Eurocode No. 2. Design of Concrete Structures. Part 1: General Rules and Rules for Buildings; British Standard Institution: London, UK, 2005. [Google Scholar]
- Ministry of Housing and Urban Rural Development of the People’s Republic of China. Code for Design of Concrete Structures; China Architecture & Building Press: Beijing, China, 2011. [Google Scholar]
- Wang, J.J.; Li, J.; Jin, W.L. Advanced Theory of Concrete Structures; China Architecture & Building Press: Beijing, China, 2000. [Google Scholar]
- Zhou, Y.C. Study on Shear Strength of Reinforced Concrete Beams with Web Reinforcement Based on Size Effect; Chongqing Jiaotong University: Chongqing, China, 2017. [Google Scholar]
- Wei, W.W.; Gong, J.X. Shear strength of reinforced concrete members based on modified compression field theory. Eng. Mech. 2011, 28, 111–117. [Google Scholar]
- Zhang, X.L.; Shi, X.M. Experimental research on shear capacity of recycled concrete beams. J. Yellow River Conserv. Tech. Inst. 2014, 26, 28–31. [Google Scholar]
- Liu, C.; Wang, X.M.; Fang, J.C.; Nong, X.Y.; Wang, Y.Q. A new calculation method of shear capacity of recycled concrete beams based on the modified compression filed theory. Chin. J. Appl. Mech. 2021, 38, 375–380. [Google Scholar]
- Huang, L.; Qi, M.Z.; Deng, P.; Gao, C. Research on calculation method and reliability of ultimate bearing capacity of recycled concrete beam based on experimental data. Build. Struct. 2021, 51, 73–81. [Google Scholar]
Fine Aggregate | Grain Diameter (mm) | Apparent Density (kg/m3) | Bulk Density (kg/m3) | Water Ratio (%) | Modulus of Fineness | Water Absorption (%) |
---|---|---|---|---|---|---|
River sand | <5 | 2548 | 1211 | 6.8 | 1.83 | 2.9 |
Apparent Density (kg/m3) | Bulk Density (kg/m3) | Water Absorption (%) | Water Ratio (%) | Crush Value Index (%) | Cavity Ratio (%) | Porosity (%) | Incubation Rate (%) |
---|---|---|---|---|---|---|---|
2481 | 1240 | 6.3 | 2.2 | 19.9 | 5.7 | 51.0 | 42.9 |
Reinforcement Type | Diameter/mm | Yield Strength fy/MPa | Tensile Strength fu/MPa | Elastic Modulus Es/MPa |
---|---|---|---|---|
HRB400 | 10 | 481 | 603 | 1.96 × 105 |
HRB400 | 14 | 459 | 528 | 1.89 × 105 |
HRB400 | 16 | 421 | 582 | 2.12 × 105 |
HRB400 | 18 | 414 | 543 | 2.21 × 105 |
Replacement Rate of Coarse Aggregate | Water Cement Ratio | The Quantities of Cement, Water, Sand, and Coarse Aggregate | |||
---|---|---|---|---|---|
100% | 1:0.34 | Cement | Water | Sand | Coarse aggregate |
623.3 kg/m3 | 211.8 kg/m3 | 491.4 kg/m3 | 1073.5 kg/m3 |
Dimensions: L × b × h (mm) | Clear Span | Reinforcement Design (mm) | Thickness of Reinforcement Cover (mm) |
---|---|---|---|
740 × 120 × 120 | 540 mm | 2φ10 | 10 |
1010 × 120 × 180 | 810 mm | 2φ14 | 15 |
1280 × 120 × 240 | 1080 mm | 2φ16 | 20 |
1550 × 120 × 300 | 1350 mm | 2φ18 | 25 |
Beam Number | Load (kN) | τmax (MPa) |
---|---|---|
B-740 | 7.6 | 0.858 |
B-1010 | 10.9 | 0.453 |
B-1280 | 6.6 | 0.293 |
B-1550 | 6.1 | 0.245 |
Beam Number | Cracking Load Pcr (kN) | Shear Fracture Strength Vcr (MPa) | Ultimate Load Pu (kN) | Shear Strength Vu (MPa) | Mid-Span Deflection △ (mm) |
---|---|---|---|---|---|
B-740 | 7.8 | 0.619 | 86.3 | 6.84 | 2.7 |
B-1010 | 11.3 | 0.596 | 106 | 5.59 | 4.08 |
B-1280 | 7.05 | 0.277 | 124.7 | 4.9 | 3.19 |
B-1550 | 7.1 | 0.222 | 177.7 | 5.56 | 5.01 |
Beam Number | B-740 | B-1010 | B-1280 | B-1550 |
---|---|---|---|---|
Test values | 86.3 | 106.0 | 124.7 | 177.7 |
ACI [31] | 15.3 | 23.0 | 30.9 | 28.7 |
(82%) * | (78%) | (75%) | (84%) | |
EN 1992-1-1 [32] | 18.1 | 29.8 | 39.0 | 46.5 |
(79%) | (72%) | (69%) | (74%) | |
GB50010-2010 [33] | 30.6 | 46.1 | 61.8 | 77.5 |
(65%) | (57%) | (50%) | (56%) | |
Truss-arch Model [34] | 111.0 | 167.1 | 224.2 | 281.2 |
(−29%) | (−58%) | (−80%) | (−37%) | |
Wang [15] | 49.1 | 95.1 | 122.0 | 151.6 |
(43%) | (10%) | (2%) | (15%) | |
Bazant [16] | 36.6 | 56.1 | 69.2 | 81.5 |
(58%) | (47%) | (45%) | (54%) | |
Zhou [35] | 23.3 | 33.2 | 40.3 | 49.1 |
(73%) | (69%) | (68%) | (72%) | |
Luo [19] | 32.9 | 66.8 | 93.5 | 112.9 |
(62%) | (37%) | (25%) | (36%) | |
Zsutty [28] | 21.2 | 34.9 | 46.4 | 58.4 |
(75%) | (67%) | (63%) | (67%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Peng, X.; Sun, Y. Shear Capacity Evaluation of the Recycled Concrete Beam. Materials 2022, 15, 3693. https://doi.org/10.3390/ma15103693
Yang Q, Peng X, Sun Y. Shear Capacity Evaluation of the Recycled Concrete Beam. Materials. 2022; 15(10):3693. https://doi.org/10.3390/ma15103693
Chicago/Turabian StyleYang, Qiuwei, Xi Peng, and Yun Sun. 2022. "Shear Capacity Evaluation of the Recycled Concrete Beam" Materials 15, no. 10: 3693. https://doi.org/10.3390/ma15103693
APA StyleYang, Q., Peng, X., & Sun, Y. (2022). Shear Capacity Evaluation of the Recycled Concrete Beam. Materials, 15(10), 3693. https://doi.org/10.3390/ma15103693