Heat Treatments of Metastable β Titanium Alloy Ti-24Nb-4Zr-8Sn Processed by Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chemical Composition
3.2. Phase Constituents and Microstructure
3.3. Mechanical Properties
4. Conclusions
- The as-built condition shows mainly β phase containing acicular α″ martensite phase, as detected via TEM. Air-cooled and water-quenched states exhibit similar microstructures consisting of β grains, investigated by LiMi and SEM. The aged condition exhibits a diffuse microstructure with homogeneous and uniform α precipitates inside the β matrix. The furnace-cooled specimens have a microstructure comparable to the aged conditions but have heterogeneously distributed and coarser α precipitates within the β phase.
- The nanostructure, determined by TEM, of the as-built condition is compared to the furnace cooled condition, which exhibits the best tensile properties regarding hardness, UTS, and YS. The α″ martensite laths were detected inside the β matrix. Based on FFT images, the orientation relationship of the α″ martensite and β phase is determined. The homogeneous distribution of alloying elements in the EDS maps indicates a diffusion-free phase transformation during cooling. The furnace-cooled specimens consist of α precipitates inside a β phase matrix. Based on crystallographic relation, the precipitates are oriented approximately 60° to each other.
- X-ray diffractograms are sensitive to the various heat treatments and, in particular, the cooling rates. High cooling rates, e.g., AC, SWQ, and the powder fabrication process, lead to the formation of the martensitic α″ phase. Low cooling rates (FC) or aging after ST result in the formation of the α phase.
- FC or aging after solution treatment results in a microstructure containing acicular α precipitates in the β matrix, leading to high tensile strength with relatively low ductility. Phase transformation, such as stress-induced α″ phase transformation, probably leads to pseudo-elastic deformation behavior in the air-cooled and slow water-quenched conditions. As the α″ phase was not detected with XRD in the furnace cooled and aged conditions, a linear stress–strain relationship was observable in the elastic range. The as-built conditions show elastic anomaly, which is attributed to the LPBF resulting microstructure. The furnace cooled condition exhibits the best mechanical properties regarding UTS, YS, and hardness with a slightly worse fracture elongation compared to the aged conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gubin, A.V.; Kuznetsov, V.P.; Borzunov, D.Y.; Koryukov, A.A.; Reznik, A.V.; Chevardin, A.Y. Challenges and Perspectives in the Use of Additive Technologies for Making Customized Implants for Traumatology and Orthopedics. Biomed. Eng. 2016, 50, 285–289. [Google Scholar] [CrossRef]
- Bechtold, J.E. Application of Computer Graphics in the Design of Custom Orthopedic Implants. Orthop. Clin. N. Am. 1986, 17, 605–612. [Google Scholar] [CrossRef]
- Heller, M.; Bauer, H.-K.; Goetze, E.; Gielisch, M.; Roth, K.E.; Drees, P.; Maier, G.S.; Dorweiler, B.; Ghazy, A.; Neufurth, M.; et al. Applications of patient-specific 3D printing in medicine. Int. J. Comput. Dent. 2016, 19, 323–339. [Google Scholar] [PubMed]
- Munsch, M. Laser additive manufacturing of customized prosthetics and implants for biomedical applications. In Laser Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2017; pp. 399–420. ISBN 9780081004333. [Google Scholar]
- Narra, S.P.; Mittwede, P.N.; DeVincent Wolf, S.; Urish, K.L. Additive Manufacturing in Total Joint Arthroplasty. Orthop. Clin. N. Am. 2019, 50, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, A.; Hötter, J.-S. Additive Manufacturing: 3D Printing for Prototyping and Manufacturing; Hanser Publishers: Cincinnati, OH, USA; Munich, Germany, 2016; ISBN 978-1-56990-582-1. [Google Scholar]
- AlMangour, B. (Ed.) Additive Manufacturing of Emerging Materials; Springer: Cham, Switzerland, 2019; ISBN 978-3-319-91713-9. [Google Scholar]
- Long, M.; Rack, H. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. 2002, 33, 477–486. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; Du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Sumitomo, N.; Noritake, K.; Hattori, T.; Morikawa, K.; Niwa, S.; Sato, K.; Niinomi, M. Experiment study on fracture fixation with low rigidity titanium alloy: Plate fixation of tibia fracture model in rabbit. J. Mater. Sci. Mater. Med. 2008, 19, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Cheruvu, B.; Venkatarayappa, I.; Goswami, T. Stress Shielding in Cemented Hip Implants Assessed from Computed Tomography. Biomed. J. Sci. Tech. Res. 2019, 18, 13637–13641. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, S.J.; Wang, H.L.; Hou, W.T.; Hao, Y.L.; Yang, R.; Sercombe, T.B.; Zhang, L.C. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater. 2016, 113, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Bahl, S.; Suwas, S.; Chatterjee, K. Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials. Int. Mater. Rev. 2021, 66, 114–139. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef]
- Hao, Y.L.; Li, S.J.; Sun, S.Y.; Zheng, C.Y.; Hu, Q.M.; Yang, R. Super-elastic titanium alloy with unstable plastic deformation. Appl. Phys. Lett. 2005, 87, 91906. [Google Scholar] [CrossRef]
- Li, S.J.; Cui, T.C.; Hao, Y.L.; Yang, R. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation. Acta Biomater. 2008, 4, 305–317. [Google Scholar] [CrossRef]
- Li, S.J.; Zhang, Y.W.; Sun, B.B.; Hao, Y.L.; Yang, R. Thermal stability and mechanical properties of nanostructured Ti–24Nb–4Zr–7.9Sn alloy. Mater. Sci. Eng. 2008, 480, 101–108. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Li, S.J.; Jia, M.T.; Hao, Y.L.; Yang, R. Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior. Scr. Mater. 2009, 60, 733–736. [Google Scholar] [CrossRef]
- Bania, P.J. Beta titanium alloys and their role in the titanium industry. JOM 1994, 46, 16–19. [Google Scholar] [CrossRef]
- Collings, E.W. The Physical Metallurgy of Titanium Alloys; American Society for Metals: Metals Park, OH, USA, 1984; ISBN 9780871701817. [Google Scholar]
- Sing, S.L.; Yeong, W.Y.; Wiria, F.E. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J. Alloys Compd. 2016, 660, 461–470. [Google Scholar] [CrossRef]
- Vrancken, B.; Thijs, L.; Kruth, J.-P.; van Humbeeck, J. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting. Acta Mater. 2014, 68, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-Y.; Cui, Y.-W.; Zhang, L.-C. Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals 2020, 10, 1139. [Google Scholar] [CrossRef]
- Jaffee, R.I.; Promisel, N.E. The Science, Technology and Application of Titanium; Elsevier: Amsterdam, The Netherlands, 1970; ISBN 9780080065649. [Google Scholar]
- Burgers, W.G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1934, 1, 561–586. [Google Scholar] [CrossRef]
- Newkirk, J.B.; Geisler, A.H. Crystallographic aspects of the beta to alpha transformation in titanium. Acta Metall. 1953, 1, 370–374. [Google Scholar] [CrossRef]
- Schmidt, F.F.; Wood, R.A. Heat Treatment of Titanium and Titanium Alloys: Heat Treatments and Tensile Properties of Titanium and Titanium Alloys for Structures. 1966. Available online: https://ntrs.nasa.gov/citations/19660015720 (accessed on 19 February 2022).
- Ehtemam-Haghighi, S.; Liu, Y.; Cao, G.; Zhang, L.-C. Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys. Mater. Sci. Eng. Mater. Biol. Appl. 2016, 60, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Haghighi, S.E.; Lu, H.B.; Jian, G.Y.; Cao, G.H.; Habibi, D.; Zhang, L.C. Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys. Mater. Des. 2015, 76, 47–54. [Google Scholar] [CrossRef]
- He, J.; Li, D.; Jiang, W.; Ke, L.; Qin, G.; Ye, Y.; Qin, Q.; Qiu, D. The Martensitic Transformation and Mechanical Properties of Ti6Al4V Prepared via Selective Laser Melting. Materials 2019, 12, 321. [Google Scholar] [CrossRef] [Green Version]
- Motyka, M. Martensite Formation and Decomposition during Traditional and AM Processing of Two-Phase Titanium Alloys—An Overview. Metals 2021, 11, 481. [Google Scholar] [CrossRef]
- Banumathy, S.; Mandal, R.K.; Singh, A.K. Structure of orthorhombic martensitic phase in binary Ti–Nb alloys. J. Appl. Phys. 2009, 106, 93518. [Google Scholar] [CrossRef]
- Hao, Y.L.; Yang, R.; Niinomi, M.; Kuroda, D.; Zhou, Y.L.; Fukunaga, K.; Suzuki, A. Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite. Metall. Mater. Trans. 2002, 33, 3137–3144. [Google Scholar] [CrossRef]
- Tang, X.; Ahmed, T.; Rack, H.J. Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys. J. Mater. Sci. 2000, 35, 1805–1811. [Google Scholar] [CrossRef]
- Li, S.J.; Niinomi, M.; Akahori, T.; Kasuga, T.; Yang, R.; Hao, Y.L. Fatigue characteristics of bioactive glass-ceramic-coated Ti-29Nb-13Ta-4.6Zr for biomedical application. Biomaterials 2004, 25, 3369–3378. [Google Scholar] [CrossRef] [PubMed]
- Hickman, B.S. The formation of omega phase in titanium and zirconium alloys: A review. J. Mater. Sci. 1969, 4, 554–563. [Google Scholar] [CrossRef]
- Williams, J.C.; Hickman, B.S.; Marcus, H.L. The effect of omega phase on the mechanical properties of titanium alloys. Metall. Mater. Trans. 1971, 2, 1913–1919. [Google Scholar] [CrossRef]
- Colombo-Pulgarín, J.C.; Biffi, C.A.; Vedani, M.; Celentano, D.; Sánchez-Egea, A.; Boccardo, A.D.; Ponthot, J.-P. Beta Titanium Alloys Processed by Laser Powder Bed Fusion: A Review. J. Mater. Eng. Perform. 2021, 30, 6365–6388. [Google Scholar] [CrossRef]
- Kolli, R.; Devaraj, A. A Review of Metastable Beta Titanium Alloys. Metals 2018, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Murr, L.E.; Gaytan, S.M.; Ramirez, D.A.; Martinez, E.; Hernandez, J.; Amato, K.N.; Shindo, P.W.; Medina, F.R.; Wicker, R.B. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. J. Mater. Sci. Technol. 2012, 28, 1–14. [Google Scholar] [CrossRef]
- Murr, L.E.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Rodela, A.; Martinez, E.Y.; Hernandez, D.H.; Martinez, E.; Medina, F.; Wicker, R.B. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2009, 2, 20–32. [Google Scholar] [CrossRef]
- Thijs, L.; Verhaeghe, F.; Craeghs, T.; van Humbeeck, J.; Kruth, J.P. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010, 58, 3303–3312. [Google Scholar] [CrossRef]
- Polozov, I.; Sufiiarov, V.; Popovich, A.; Masaylo, D.; Grigoriev, A. Synthesis of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from elemental powders using powder-bed fusion additive manufacturing. J. Alloys Compd. 2018, 763, 436–445. [Google Scholar] [CrossRef]
- Xu, C.; Sikan, F.; Atabay, S.E.; Muñiz-Lerma, J.A.; Sanchez-Mata, O.; Wang, X.; Brochu, M. Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion. Mater. Sci. Eng. Struct. Mater. 2020, 793, 139978. [Google Scholar] [CrossRef]
- Sercombe, T.; Jones, N.; Day, R.; Kop, A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyp. J. 2008, 14, 300–304. [Google Scholar] [CrossRef]
- Hein, M.; Hoyer, K.-P.; Schaper, M. Additively processed TiAl6Nb7 alloy for biomedical applications. Mater. Und Werkst. 2021, 52, 703–716. [Google Scholar] [CrossRef]
- Hein, M.; Kokalj, D.; Lopes Dias, N.F.; Stangier, D.; Oltmanns, H.; Pramanik, S.; Kietzmann, M.; Hoyer, K.-P.; Meißner, J.; Tillmann, W.; et al. Low Cycle Fatigue Performance of Additively Processed and Heat-Treated Ti-6Al-7Nb Alloy for Biomedical Applications. Metals 2022, 12, 122. [Google Scholar] [CrossRef]
- Mold, M.; Linhart, C.; Gómez-Ramírez, J.; Villegas-Lanau, A.; Exley, C. Aluminum and Amyloid-β in Familial Alzheimer’s Disease. J. Alzheimers Dis. 2020, 73, 1627–1635. [Google Scholar] [CrossRef] [Green Version]
- Engelhart, S.; Segal, R.J. Allergic reaction to vanadium causes a diffuse eczematous eruption and titanium alloy orthopedic implant failure. Cutis 2017, 99, 245–249. [Google Scholar]
- Klotz, K.; Weistenhöfer, W.; Neff, F.; Hartwig, A.; van Thriel, C.; Drexler, H. The Health Effects of Aluminum Exposure. Dtsch. Arztebl. Int. 2017, 114, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.L.; Zhang, Z.J.; Li, S.J.; Liu, Y.J.; Sercombe, T.B.; Hou, W.T.; Zhang, P.; Zhu, Y.K.; Hao, Y.L.; Zhang, Z.F.; et al. Simultaneous improvement in strength and plasticity of Ti-24Nb-4Zr-8Sn manufactured by selective laser melting. Mater. Des. 2018, 157, 52–59. [Google Scholar] [CrossRef]
- DIN EN ISO 6892-1:2020-06; Metallische Werkstoffe_-Zugversuch_-Teil_1: Prüfverfahren bei Raumtemperatur (ISO_6892-1:2019), Deutsche Fassung EN_ISO_6892-1:2019. Beuth Verlag GmbH: Berlin, Germany, 2020.
- Bidare, P.; Bitharas, I.; Ward, R.M.; Attallah, M.M.; Moore, A.J. Laser powder bed fusion at sub-atmospheric pressures. Int. J. Mach. Tools Manuf. 2018, 130, 65–72. [Google Scholar] [CrossRef]
- Collur, M.M.; Paul, A.; DebRoy, T. Mechanism of alloying element vaporization during laser welding. MTB 1987, 18, 733–740. [Google Scholar] [CrossRef]
- Dai, D.; Gu, D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres. Appl. Surf. Sci. 2015, 355, 310–319. [Google Scholar] [CrossRef]
- Santecchia, E.; Spigarelli, S.; Cabibbo, M. Material Reuse in Laser Powder Bed Fusion: Side Effects of the Laser—Metal Powder Interaction. Metals 2020, 10, 341. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Zhang, W.; Ke, L.; Wei, H.; Wang, D.; Yang, L.; Zhu, H.; Dong, P.; Wang, G.; Zeng, X. Vaporization of alloying elements and explosion behavior during laser powder bed fusion of Cu–10Zn alloy. Int. J. Mach. Tools Manuf. 2021, 161, 103686. [Google Scholar] [CrossRef]
- Hryha, E.; Shvab, R.; Bram, M.; Bitzer, M.; Nyborg, L. Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition. Appl. Surf. Sci. 2016, 388, 294–303. [Google Scholar] [CrossRef]
- Lütjering, G.; Williams, J.C. Titanium, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9783540713975. [Google Scholar]
- Li, C.; Chen, J.H.; Wu, X.; van der Zwaag, S. Effect of strain rate on stress-induced martensitic formation and the compressive properties of Ti–V–(Cr,Fe)–Al alloys. Mater. Sci. Eng. Struct. Mater. 2013, 573, 111–118. [Google Scholar] [CrossRef]
- Neelakantan, S. Tailoring the Mechanical Properties of Titanium Alloys via Plasticity Induced Transformations. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Meng, F.; Yan, J.-Y.; Olson, G.B. TRIP Titanium Alloy Design. MATEC Web Conf. 2020, 321, 11070. [Google Scholar] [CrossRef]
- Yan, J.-Y. TRIP Titanium Alloy Design. Ph.D. Dissertation, Northwestern University, Evanston, IL, USA, 2014. [Google Scholar]
- Moffat, D.L.; Larbalestier, D.C. The compctition between martensite and omega in quenched Ti-Nb alloys. Metall. Mater. Trans. 1988, 19, 1677–1686. [Google Scholar] [CrossRef]
- Duerig, T.W.; Albrecht, J.; Richter, D.; Fischer, P. Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al. Acta Metall. 1982, 30, 2161–2172. [Google Scholar] [CrossRef]
- Qi, L.; He, S.; Chen, C.; Jiang, B.; Hao, Y.; Ye, H.; Yang, R.; Du, K. Diffusional-displacive transformation in a metastable β titanium alloy and its strengthening effect. Acta Mater. 2020, 195, 151–162. [Google Scholar] [CrossRef]
- Dutta, B.; Froes, F.H. The Additive Manufacturing (AM) of titanium alloys. Metall. Powder Rep. 2017, 72, 96–106. [Google Scholar] [CrossRef]
- Barriobero-Vila, P.; Gussone, J.; Haubrich, J.; Sandlöbes, S.; Da Silva, J.C.; Cloetens, P.; Schell, N.; Requena, G. Inducing Stable α + β Microstructures during Selective Laser Melting of Ti-6Al-4V Using Intensified Intrinsic Heat Treatments. Materials 2017, 10, 268. [Google Scholar] [CrossRef] [PubMed]
- Mantani, Y.; Tajima, M. Phase transformation of quenched α″ martensite by aging in Ti–Nb alloys. Mater. Sci. Eng. Struct. Mater. 2006, 438, 315–319. [Google Scholar] [CrossRef]
- Zwicker, U. Titan und Titanlegierungen; Springer: Berlin/Heidelberg, Germany, 1974; ISBN 978-3-642-80588-2. [Google Scholar]
- Liu, J.P.; Wang, Y.D.; Hao, Y.L.; Wang, H.L.; Wang, Y.; Nie, Z.H.; Su, R.; Wang, D.; Ren, Y.; Lu, Z.P.; et al. High-energy X-ray diffuse scattering studies on deformation-induced spatially confined martensitic transformations in multifunctional Ti–24Nb–4Zr–8Sn alloy. Acta Mater. 2014, 81, 476–486. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Castany, P.; Bertrand, E.; Cornen, M.; Lin, J.X.; Gloriant, T. Stress release-induced interfacial twin boundary ω phase formation in a β type Ti-based single crystal displaying stress-induced α” martensitic transformation. Acta Mater. 2018, 149, 97–107. [Google Scholar] [CrossRef]
- Ren, L.; Xiao, W.; Han, W.; Ma, C.; Zhou, L. Influence of duplex ageing on secondary α precipitates and mechanical properties of the near β-Ti alloy Ti-55531. Mater. Charact. 2018, 144, 1–8. [Google Scholar] [CrossRef]
- Mantri, S.A.; Choudhuri, D.; Alam, T.; Viswanathan, G.B.; Sosa, J.M.; Fraser, H.L.; Banerjee, R. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength. Scr. Mater. 2018, 154, 139–144. [Google Scholar] [CrossRef]
- Yang, Y.; Castany, P.; Cornen, M.; Prima, F.; Li, S.J.; Hao, Y.L.; Gloriant, T. Characterization of the martensitic transformation in the superelastic Ti–24Nb–4Zr–8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis. Acta Mater. 2015, 88, 25–33. [Google Scholar] [CrossRef]
- Hao, Y.L.; Zhang, Z.B.; Li, S.J.; Yang, R. Microstructure and mechanical behavior of a Ti–24Nb–4Zr–8Sn alloy processed by warm swaging and warm rolling. Acta Mater. 2012, 60, 2169–2177. [Google Scholar] [CrossRef]
- Peters, M.; Leyens, C. Titan und Titanlegierungen, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2002; ISBN 9783527611089. [Google Scholar]
- Sibum, H. Titanium and Titanium Alloys—From Raw Material to Semi-finished Products. Adv. Eng. Mater. 2003, 5, 393–398. [Google Scholar] [CrossRef]
- Ohmori, Y.; Ogo, T.; Nakai, K.; Kobayashi, S. Effects of ω-phase precipitation on β→α, α′′ transformations in a metastable β titanium alloy. Mater. Sci. Eng. Struct. Mater. 2001, 312, 182–188. [Google Scholar] [CrossRef]
- Zhang, L.C.; Klemm, D.; Eckert, J.; Hao, Y.L.; Sercombe, T.B. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr. Mater. 2011, 65, 21–24. [Google Scholar] [CrossRef]
- Zhang, L.C.; Sercombe, T.B. Selective Laser Melting of Low-Modulus Biomedical Ti-24Nb-4Zr-8Sn Alloy: Effect of Laser Point Distance. KEM 2012, 520, 226–233. [Google Scholar] [CrossRef]
- Hernandez, J.; Li, S.J.; Martinez, E.; Murr, L.E.; Pan, X.M.; Amato, K.N.; Cheng, X.Y.; Yang, F.; Terrazas, C.A.; Gaytan, S.M.; et al. Microstructures and Hardness Properties for β-Phase Ti–24Nb–4Zr–7.9Sn Alloy Fabricated by Electron Beam Melting. J. Mater. Sci. Technol. 2013, 29, 1011–1017. [Google Scholar] [CrossRef]
- Ardell, A.J. Precipitation hardening. Metall. Mater. Trans. 1985, 16, 2131–2165. [Google Scholar] [CrossRef]
- Kolli, R.P.; Joost, W.J.; Ankem, S. Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys. JOM 2015, 67, 1273–1280. [Google Scholar] [CrossRef]
- Furuta, T.; Kuramoto, S.; Hwang, J.; Nishino, K.; Saito, T. Elastic Deformation Behavior of Multi-Functional Ti–Nb–Ta–Zr–O Alloys. Mater. Trans. 2005, 46, 3001–3007. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.L.; Li, S.J.; Sun, S.Y.; Zheng, C.Y.; Yang, R. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomater. 2007, 3, 277–286. [Google Scholar] [CrossRef]
- Pantawane, M.V.; Dasari, S.; Mantri, S.A.; Banerjee, R.; Dahotre, N.B. Rapid thermokinetics driven nanoscale vanadium clustering within martensite laths in laser powder bed fused additively manufactured Ti6Al4V. Mater. Res. Lett. 2020, 8, 383–389. [Google Scholar] [CrossRef]
- Cao, S.; Zou, Y.; Lim, C.V.S.; Wu, X. Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: Process, post-process treatment, microstructure, and property. Gxjzz 2021, 2, 1. [Google Scholar] [CrossRef]
- Froes, F.H.; Bomberger, H.B. The Beta Titanium Alloys. JOM 1985, 37, 28–37. [Google Scholar] [CrossRef]
- Lin, D.J.; Chern Lin, J.H.; Ju, C.P. Structure and properties of Ti–7.5Mo–xFe alloys. Biomaterials 2002, 23, 1723–1730. [Google Scholar] [CrossRef]
- Rajan Soundararajan, S.; Vishnu, J.; Manivasagam, G.; Rao Muktinutalapati, N. Heat Treatment of Metastable Beta Titanium Alloys. In Welding—Modern Topics; Crisóstomo Absi Alfaro, S., Borek, W., Tomiczek, B., Eds.; IntechOpen: Rijeka, Croatia, 2021; ISBN 978-1-83881-895-1. [Google Scholar]
- Coakley, J.; Rahman, K.M.; Vorontsov, V.A.; Ohnuma, M.; Dye, D. Effect of precipitation on mechanical properties in the β-Ti alloy Ti–24Nb–4Zr–8Sn. Mater. Sci. Eng. Struct. Mater. 2016, 655, 399–407. [Google Scholar] [CrossRef] [Green Version]
Condition | Ti | Nb | Zr | Sn | O | Moeq |
---|---|---|---|---|---|---|
Target Value | Bal. | 23.5–24.5 | 3.5–4.5 | 7.5–8.5 | <0.12 | 2.32 |
Initial Powder | Bal. | 25.2 | 4.2 | 7.1 | 0.11 | 2.94 |
as-built | Bal. | >9.0 | 3.5 | 8.2 | 0.37 | - |
Condition | Hcp α | Orthorhombic α″ | Bcc β | |||
---|---|---|---|---|---|---|
a = b [Å] | c [Å] | a [Å] | b [Å] | c [Å] | a = b = c [Å] | |
Initial Powder | - | - | 3.107 | 4.924 | 4.716 | 3.298 |
as-built | - | - | - | - | - | 3.287 |
as-built (TEM) | - | - | 3.28 | 4.88 | 4.617 | 3.297 |
ST+FC | 2.959 | 4.758 | - | - | - | 3.303 |
ST+FC (TEM) | 3.191 | 5.045 | - | - | - | 3.294 |
ST+AC | - | - | 3.110 | 4.860 | 4.716 | 3.294 |
ST+SWQ | - | - | 3.121 | 4.871 | 4.679 | 3.295 |
ST+SWQ+A | 2.959 | 4.726 | - | - | - | 3.294 |
Condition | Hardness [HV5] | YS [MPa] | UTS [MPa] | A [%] | E1/E2 [GPa] |
---|---|---|---|---|---|
as-built | 219 ± 8 | 490 ± 16 | 700 ± 6 | 22 ± 1 | 49 ± 1/- |
ST+AC | 232 ± 5 | 362 ± 7 | 707 ± 2 | 20 ± 2 | 51 ± 2/14 ± 0.1 |
ST+SWQ | 230 ± 5 | 339 ± 10 | 705 ± 3 | 19 ± 2 | 50 ± 2/14 ± 0.1 |
ST+SWQ+A | 290 ± 4 | 819 ± 27 | 871 ± 22 | 12 ± 2 | 76 ± 3/- |
ST+FC | 305 ± 3 | 805 ± 11 | 931 ± 7 | 11 ± 1 | 73 ± 1/- |
LPBF [83] | 220–230 | 563 ± 38 | 665 ± 18 | 14 ± 4 | 53 ± 1/- |
Hot rolled [21] | - | 700 | 830 | 15 | 46 |
Hot-forged [19] | 230–370 | 570 | 750 | 13 | 55 |
Hot-forged [79] | 215 | - | 800 | 18 | 52 |
Warm swaged [79] | 230 | - | 850 | 14 | 55 |
Warm rolled [79] | 265 | - | 1150 | 8 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hein, M.; Lopes Dias, N.F.; Pramanik, S.; Stangier, D.; Hoyer, K.-P.; Tillmann, W.; Schaper, M. Heat Treatments of Metastable β Titanium Alloy Ti-24Nb-4Zr-8Sn Processed by Laser Powder Bed Fusion. Materials 2022, 15, 3774. https://doi.org/10.3390/ma15113774
Hein M, Lopes Dias NF, Pramanik S, Stangier D, Hoyer K-P, Tillmann W, Schaper M. Heat Treatments of Metastable β Titanium Alloy Ti-24Nb-4Zr-8Sn Processed by Laser Powder Bed Fusion. Materials. 2022; 15(11):3774. https://doi.org/10.3390/ma15113774
Chicago/Turabian StyleHein, Maxwell, Nelson Filipe Lopes Dias, Sudipta Pramanik, Dominic Stangier, Kay-Peter Hoyer, Wolfgang Tillmann, and Mirko Schaper. 2022. "Heat Treatments of Metastable β Titanium Alloy Ti-24Nb-4Zr-8Sn Processed by Laser Powder Bed Fusion" Materials 15, no. 11: 3774. https://doi.org/10.3390/ma15113774
APA StyleHein, M., Lopes Dias, N. F., Pramanik, S., Stangier, D., Hoyer, K. -P., Tillmann, W., & Schaper, M. (2022). Heat Treatments of Metastable β Titanium Alloy Ti-24Nb-4Zr-8Sn Processed by Laser Powder Bed Fusion. Materials, 15(11), 3774. https://doi.org/10.3390/ma15113774