Analysis of Dispersion of Carbon Nanotubes in m-Cresol
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dispersion Stability of CNTs in m-Cresol
3.2. Dispersion State of CNTs in m-Cresol
3.3. Raman Spectroscopy of CNT/m-Cresol System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukai, K.; Asaka, K.; Wu, X.; Morimoto, T.; Okazaki, T.; Saito, T.; Yumura, M. Wet Spinning of Continuous Polymer-Free Carbon-Nanotube Fibers with High Electrical Conductivity and Strength. Appl. Phys. Express 2016, 9, 55101. [Google Scholar] [CrossRef]
- Turek, E.; Shiraki, T.; Shiraishi, T.; Shiga, T.; Fujigaya, T.; Janas, D. Single-Step Isolation of Carbon Nanotubes with Narrow-Band Light Emission Characteristics. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Koziol, K.K.K.; Kinloch, I.A.; Windle, A.H. Macroscopic Fibers of Well-Aligned Carbon Nanotubes by Wet Spinning. Small 2008, 4, 1217–1222. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Windle, A.H. Isotropic-Nematic Phase Transition of Dispersions of Multiwall Carbon Nanotubes. Macromolecules 2005, 38, 6181–6188. [Google Scholar] [CrossRef]
- Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes. Science 2000, 290, 1331–1334. [Google Scholar] [CrossRef]
- Jiang, X.; Gong, W.; Qu, S.; Wang, D.; Liu, T.; Li, Q.; Zhou, G.; Lu, W. Understanding the Influence of Single-Walled Carbon Nanotube Dispersion States on the Microstructure and Mechanical Properties of Wet-Spun Fibers. Carbon N. Y. 2020, 169, 17–24. [Google Scholar] [CrossRef]
- Davis, V.A.; Parra-Vasquez, A.N.G.; Green, M.J.; Rai, P.K.; Behabtu, N.; Prieto, V.; Booker, R.D.; Schmidt, J.; Kesselman, E.; Zhou, W.; et al. True Solutions of Single-Walled Carbon Nanotubes for Assembly into Macroscopic Materials. Nat. Nanotechnol. 2009, 4, 830–834. [Google Scholar] [CrossRef]
- Parra-Vasquez, A.N.G.; Behabtu, N.; Green, M.J.; Pint, C.L.; Young, C.C.; Schmidt, J.; Kesselman, E.; Goyal, A.; Ajayan, P.M.; Cohen, Y.; et al. Spontaneous Dissolution of Ultralong Single-and Multiwalled Carbon Nanotubes. ACS Nano 2010, 4, 3969–3978. [Google Scholar] [CrossRef]
- Behabtu, N.; Young, C.C.; Tsentalovich, D.E.; Kleinerman, O.; Wang, X.; Ma, A.W.K.; Bengio, E.A.; ter Waarbeek, R.F.; de Jong, J.J.; Hoogerwerf, R.E.; et al. Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity. Science 2013, 339, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.W.; Dewey, O.S.; Headrick, R.J.; Komatsu, N.; Peraca, N.M.; Wehmeyer, G.; Kono, J.; Pasquali, M. Improved Properties, Increased Production, and the Path to Broad Adoption of Carbon Nanotube Fibers. Carbon N. Y. 2021, 171, 689–694. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.M.; Jung, Y.; Park, J.; Lee, H.S.; Kim, Y.K.; Park, C.R.; Jeong, H.S.; Kim, S.M. Direct Spinning and Densification Method for High-Performance Carbon Nanotube Fibers. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, D.M.; Kim, Y.K.; Jeong, H.S.; Kim, S.M. Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers. Small 2017, 13. [Google Scholar] [CrossRef] [PubMed]
- Green, M.J.; Young, C.C.; Parra-Vasquez, A.N.G.; Majumder, M.; Juloori, V.; Behabtu, N.; Pint, C.L.; Schmidt, J.; Kesselman, E.; Hauge, R.H.; et al. Direct Imaging of Carbon Nanotubes Spontaneously Filled with Solvent. Chem. Commun. 2011, 47, 1228–1230. [Google Scholar] [CrossRef] [PubMed]
- Chiou, K.; Byun, S.; Kim, J.; Huang, J. Additive-Free Carbon Nanotube Dispersions, Pastes, Gels, and Doughs in Cresols. Proc. Natl. Acad. Sci. USA 2018, 115, 5703–5708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Park, J.; Cho, H.; Lee, J.; Lee, K.H. Investigation of Shear-Induced Rearrangement of Carbon Nanotube Bundles Using Taylor-Couette Flow. RSC Advances 2021, 11, 38152–38160. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Morimoto, T.; Mukai, K.; Asaka, K.; Okazaki, T. Relationship between Mechanical and Electrical Properties of Continuous Polymer-Free Carbon Nanotube Fibers by Wet-Spinning Method and Nanotube-Length Estimated by Far-Infrared Spectroscopy. J. Phys. Chem. C. 2016, 120, 20419–20427. [Google Scholar] [CrossRef]
- Tajima, N.; Watanabe, T.; Morimoto, T.; Kobashi, K.; Mukai, K.; Asaka, K.; Okazaki, T. Nanotube Length and Density Dependences of Electrical and Mechanical Properties of Carbon Nanotube Fibres Made by Wet Spinning. Carbon N. Y. 2019, 152, 1–6. [Google Scholar] [CrossRef]
- Chiou, K.; Huang, J. Cresol-Carbon Nanotube Charge-Transfer Complex: Stability in Common Solvents and Implications for Solution Processing. Matter 2020, 3, 302–319. [Google Scholar] [CrossRef]
- Kennedy, L.J.; Vijaya, J.J.; Sekaran, G.; Kayalvizhi, K. Equilibrium, Kinetic and Thermodynamic Studies on the Adsorption of m-Cresol onto Micro- and Mesoporous Carbon. J. Hazard. Mater. 2007, 149, 134–143. [Google Scholar] [CrossRef]
- Chiang, I.W.; Brinson, B.E.; Huang, A.Y.; Willis, P.A.; Bronikowski, M.J.; Margrave, J.L.; Smalley, R.E.; Hauge, R.H. Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process). J. Phys. Chem. B 2001, 105, 8297–8301. [Google Scholar] [CrossRef] [Green Version]
- Clancy, A.J.; White, E.R.; Tay, H.H.; Yau, H.C.; Shaffer, M.S.P. Systematic Comparison of Conventional and Reductive Single-Walled Carbon Nanotube Purifications. Carbon N. Y. 2016, 108, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Comer, J.; Chen, R.; Poblete, H.; Vergara-Jaque, A.; Riviere, J.E. Predicting Adsorption Affinities of Small Molecules on Carbon Nanotubes Using Molecular Dynamics Simulation. ACS Nano 2015, 9, 11761–11774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenseleers, W.; Vlasov, I.L.; Goovaerts, E.; Obraztsova, E.D.; Lobach, A.S.; Bouwen, A. Efficient Isolation and Solubilization of Pristine Single-Walled Nanotubes in Bile Salt Micelles. Adv. Funct. Mater. 2004, 14, 1105–1112. [Google Scholar] [CrossRef]
- O’Connell, M.J.; Bachilo, S.M.; Huffman, C.B.; Moore, V.C.; Strano, M.S.; Haroz, E.H.; Rialon, K.L.; Boul, P.J.; Noon, W.H.; Kittrell, C.; et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science 2002, 297, 593–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumanasekera, G.U.; Allen, J.L.; Fang, S.L.; Loper, A.L.; Rao, A.M.; Eklund, P.C. Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid. J. Phys. Chem. B 1999, 103, 4292–4297. [Google Scholar] [CrossRef]
- Yu, H.; Yan, P. Determination of M-Cresol and p-Cresol in Industrial Cresols by Raman Spectrometer. Proc. Adv. Mater. Res. 2012, 468–471, 1104–1109. [Google Scholar] [CrossRef]
CNT Product (Supplier) | TUBALL (OCSiAl) | SG101 (ZEONANO) | BT1001M (LG Chem) |
---|---|---|---|
CNT type | SWCNT | SWCNT | MWCNT |
Specific surface area (m2/g) | 800–1600 | 800 | 250 |
Length (μm) | >5 | 100–600 | N/A |
Diameter (nm) | 1.6 ± 0.4 | 3–5 | 10 |
Carbon purity (wt.%) | 99 | 99 | 95 |
Bulk density (kg/m3) | N/A | N/A | 25 |
IG/ID ratio * | 136.0 | 24.7 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, J.; Lee, D.-M.; Lee, J. Analysis of Dispersion of Carbon Nanotubes in m-Cresol. Materials 2022, 15, 3777. https://doi.org/10.3390/ma15113777
Im J, Lee D-M, Lee J. Analysis of Dispersion of Carbon Nanotubes in m-Cresol. Materials. 2022; 15(11):3777. https://doi.org/10.3390/ma15113777
Chicago/Turabian StyleIm, Jaegyun, Dong-Myeong Lee, and Jaegeun Lee. 2022. "Analysis of Dispersion of Carbon Nanotubes in m-Cresol" Materials 15, no. 11: 3777. https://doi.org/10.3390/ma15113777
APA StyleIm, J., Lee, D. -M., & Lee, J. (2022). Analysis of Dispersion of Carbon Nanotubes in m-Cresol. Materials, 15(11), 3777. https://doi.org/10.3390/ma15113777