Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Geometric Structures and Stability of Heterojunction
3.2. Electronic Properties
3.3. Photocatalytic Water Splitting
3.4. Carrier Mobility
3.5. Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, M.D.; Lee, J.S. Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells. J. Mater. Chem. A 2015, 3, 10632–10659. [Google Scholar] [CrossRef]
- Cook, T.R.; Dogutan, D.K.; Reece, S.Y.; Surendranath, Y.; Teets, T.S.; Nocera, D.G. Solar energy supply and storage for the legacy and non legacy worlds. Chem. Rev. 2010, 110, 6474–6502. [Google Scholar] [CrossRef] [PubMed]
- Alfano, O.M.; Bahnemann, D.; Cassano, A.E.; Dillert, R.; Goslich, R. Photocatalysis in water environments using artificial and solar light. Catal. Today 2000, 58, 199–230. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Yuan, J.; Zhang, L.; Hu, W.; Wu, Z.; Wang, X.; Huang, X.; Liu, P.; Zhang, S. Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O. Appl. Catal. B 2020, 277, 119250. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Cao, H.; Wang, L.; Wan, Z.; Hao, Y.; Wang, X. Facile preparation of ZnS/CdS core/shell nanotubes and their enhanced photocatalytic performance. Int. J. Hydrogen Energy 2017, 42, 17394–17402. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Soltani, B.; Amani-Ghadim, A.R.; Hedayati, B.; Khomami, B.; Joo, S.W. Praseodymium-doped ZnS nanomaterials: Hydrothermal synthesis and characterization with enhanced visible light photocatalytic activity. J. Ind. Eng. Chem. 2016, 34, 41–50. [Google Scholar] [CrossRef]
- Hao, X.; Zhou, J.; Cui, Z.; Wang, Y.; Wang, Y.; Zou, Z. Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Appl. Catal. B 2018, 229, 41–51. [Google Scholar] [CrossRef]
- Hassan, M.A.; Waseem, A.; Johar, M.A.; Bagal, I.; Ha, J.S.; Ryu, S.W. Single-step fabrication of 3D hierarchical ZnO/ZnS heterojunction branched nanowires by MOCVD for enhanced photoelectrochemical water splitting. J. Mater. Chem. A 2020, 8, 8300–8312. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Huang, B.; Ma, X.; Wang, G.; Dai, Y.; Zhang, X.; Qin, X. Synthesis of Mn-doped ZnS microspheres with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 2017, 391, 557–564. [Google Scholar] [CrossRef]
- Yu, X.; Wei, P.; Li, Y. Enhanced sunlight photocatalytic performance of ZnO/ZnS binary heterostructure sheets. Mater. Lett. 2019, 240, 284–286. [Google Scholar] [CrossRef]
- Zhang, K.; Jin, L.; Yang, Y.; Guo, K.; Hu, F. Novel method of constructing CdS/ZnS heterojunction for high performance and stable photocatalytic activity. J. Photochem. Photobiol. A 2019, 380, 111859. [Google Scholar] [CrossRef]
- Liberto, G.D.; Tosoni, S.; Pacchioni, G. Charge carriers cascade in a ternary TiO2/TiO2/ZnS Heterojunction: A DFT study. ChemCatChem 2020, 12, 2097–2105. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Su, Q.; Hu, R.; Song, F.; Liu, S.; Guo, C.; Zhu, S.; Liu, W.; Pan, J. Heterojunction photocatalysts based on 2D materials: The role of configuration. Adv. Sustain. Syst. 2020, 4, 2000130. [Google Scholar] [CrossRef]
- Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Z-Scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges. Adv. Sci. 2016, 3, 1500389. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Li, S.; Chen, J.; Cai, S.; Long, Z.; Fang, X. Design principles and material engineering of ZnS for optoelectronic devices and catalysis. Adv. Funct. Mater. 2018, 28, 1802029. [Google Scholar] [CrossRef]
- Jothibas, M.; Manoharan, C.; Jeyakumar, S.J.; Praveen, P.; Punithavathy, I.K.; Richard, J.P. Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 2018, 159, 434–443. [Google Scholar] [CrossRef]
- Bakhtkhosh, P.; Mehrizad, A. Sonochemical synthesis of Sm-doped ZnS nanoparticles for photocatalytic degradation of Direct Blue 14: Experimental design by response surface methodology and development of a kinetics model. J. Mol. Liq. 2017, 240, 65–73. [Google Scholar] [CrossRef]
- Fang, Z.; Weng, S.; Ye, X.; Feng, W.; Zheng, Z.; Lu, M.; Lin, S.; Fu, X.; Liu, P. Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2015, 7, 13915–13924. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Wang, Y.; Zhou, J.; Cui, Z.; Wang, Y.; Zou, Z. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Appl. Catal. B 2018, 221, 302–311. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, J.; Liu, R. Defect engineering of zeolite imidazole framework derived ZnS nanosheets towards enhanced visible light driven photocatalytic hydrogen production. Appl. Catal. B 2020, 278, 119265. [Google Scholar] [CrossRef]
- Yazdani, E.B.; Mehrizad, A. Sonochemical preparation and photocatalytic application of Ag-ZnS-MWCNTs composite for the degradation of Rhodamine B under visible light: Experimental design and kinetics modeling. J. Mol. Liq. 2018, 255, 102–112. [Google Scholar] [CrossRef]
- Sacco, O.; Vaiano, V.; Sannino, D.; Picca, R.A.; Cioffi, N. Ag modified ZnS for photocatalytic water pollutants degradation: Influence of metal loading and preparation method. J. Colloid Interface Sci. 2019, 537, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Li, W.; Wang, F.; Li, H.; Liu, X.; Sun, J. In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light. J. Colloid Interface Sci. 2017, 493, 1–9. [Google Scholar] [CrossRef]
- Zhao, E.; Gao, L.; Yang, S.; Wang, L.; Cao, J.; Ma, T. In situ fabrication of 2D SnS2 nanosheets as a new electron transport layer for perovskite solar cells. Nano Res. 2018, 11, 5913–5923. [Google Scholar] [CrossRef]
- Shown, I.; Samireddi, S.; Chang, Y.C.; Putikam, R.; Chang, P.H.; Sabbah, A.; Fu, F.Y.; Chen, W.F.; Wu, C.I.; Yu, T.Y.; et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun. 2018, 9, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S.; et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem. Int. Ed. 2012, 51, 8827–8831. [Google Scholar]
- Yu, J.; Xu, C.; Ma, F.; Hu, S.; Zhang, Y.; Zhen, L. Monodisperse SnS2 nanosheets for high-performance photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2014, 6, 22370–22377. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Du, Z.N.; Li, S.Y.; Zhang, M. Novel synthesis and high visible light photocatalytic activity of SnS2 nanoflakes from SnCl2·2H2O and S powders. Appl. Catal. B 2010, 95, 153–159. [Google Scholar] [CrossRef]
- Mondal, C.; Ganguly, M.; Pal, J.; Roy, A.; Jana, J.; Pal, T. Morphology controlled synthesis of SnS2 nanomaterial for promoting photocatalytic reduction of aqueous Cr (VI) under visible light. Langmuir 2014, 30, 4157–4164. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Deng, D.; Han, Z.; Xiao, W.; Bian, C.; Qian, X. Hexagonal tin disulfide nanoplatelets: A new photocatalyst driven by solar light. CrystEngComm 2011, 13, 2071–2076. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Y.; Xu, X.; Yang, T.; Zhang, D. Preparation of the flower-like MoS2/SnS2 heterojunction as an efficient electrocatalyst for hydrogen evolution reaction. Mol. Catal. 2020, 487, 110890. [Google Scholar] [CrossRef]
- Liu, J.; Hua, E. High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin: Insights from hybrid DFT. J. Phys. Chem. C 2017, 121, 25827–25835. [Google Scholar] [CrossRef]
- Gu, D.; Zhao, Y.; Wang, J. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens. Actuators B 2017, 244, 67–76. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Yuan, H.; Zhou, T.; Chang, J.; Chen, H. Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction. Int. J. Hydrogen Energy 2020, 45, 2785–2793. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, S.; Zhang, R.; Zhu, K.; Tie, Y.; Pei, S. Optimization NH3 sensing performance manifested by gas sensor based on Pr-SnS2/ZnS hierarchical nanoflowers. J. Alloys Compd. 2019, 807, 151650. [Google Scholar] [CrossRef]
- Xu, X.; Ma, S.; Xu, X.; Pei, S.; Han, T.; Liu, W. Transformation synthesis of heterostructured SnS2/ZnS microspheres for ultrafast triethylamine detection. J. Alloys Compd. 2021, 868, 159286. [Google Scholar] [CrossRef]
- Wang, L.; Jin, G.; Shi, Y.; Zhang, H.; Xie, H.; Yang, B.; Sun, H. Co-catalyst-free ZnS-SnS2 porous nanosheets for clean and recyclable photocatalytic H2 generation. J. Alloys Compd. 2018, 753, 60–67. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, G.; Zeng, J.; Shi, Y.; Lin, S.; Chen, X.; Wang, H.; Kong, Z.; Xi, J.; Ji, Z. High carriers transmission efficiency ZnS/SnS2 heterojunction channel toward excellent photoelectrochemical activity. J. Am. Ceram. Soc. 2019, 102, 2810–2819. [Google Scholar]
- Derikvandi, H.; Nezamzadeh-Ejhieh, A. An effective wastewater treatment based on sunlight photodegradation by SnS2–ZnS/clinoptilolite composite. Solid State Sci. 2020, 101, 106127. [Google Scholar] [CrossRef]
- Xia, B.; Deng, F.; Zhang, S.; Hua, L.; Luo, X.; Ao, M. Design and synthesis of robust Z-scheme ZnS-SnS2 n-n heterojunctions for highly efficient degradation of pharmaceutical pollutants: Performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation. J. Hazard. Mater. 2020, 392, 122345. [Google Scholar] [CrossRef] [PubMed]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207. [Google Scholar] [CrossRef] [Green Version]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511. [Google Scholar] [CrossRef] [Green Version]
- Bokka, N.; Som, D.; Kanungo, S.; Sahatiya, P. Investigation of the transduction mechanism of few layer SnS2 for pressure and strain sensing: Experimental correlation with first principles study. IEEE Sens. J. 2021, 21, 17254–17261. [Google Scholar] [CrossRef]
- Mondal, S.; Sahoo, L.; Vinod, C.P.; Gautam, U.K. Facile transfer of excited electrons in Au/SnS2 nanosheets for efficient solar-driven selective organic transformations. Appl. Catal. B 2021, 286, 119927. [Google Scholar] [CrossRef]
- Luo, Y.; Ren, K.; Wang, S.; Chou, J.P.; Yu, J.; Sun, Z.; Sun, M. First-principles study on transition-metal dichalcogenide/BSe van der waals heterostructures: A promising water-splitting photocatalyst. J. Phys. Chem. C 2019, 123, 22742–22751. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, Y.; Wei, X.; Guo, T.; Fan, J.; Ni, L.; Weng, Y.; Zha, Z.; Liu, J.; Tian, Y.; et al. GaTe/CdS heterostructure with tunable electronic properties via external electric field and biaxial strain. J. Alloys Compd. 2020, 832, 154965. [Google Scholar] [CrossRef]
- Idrees, M.; U-Din, H.; Rehman, U.; Shafiq, M.; Saeed, Y.; Bui, H.; Nguyen, C.; Amin, B. Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Phys. Chem. Chem. Phys. 2020, 22, 10351–10359. [Google Scholar] [CrossRef]
- Li, H.; Ye, L.; Xiong, Y.; Zhong, H.; Zhou, S.; Li, W. Tunable electronic properties of BSe–MoS2/WS2 heterostructures for promoted light utilization. Phys. Chem. Chem. Phys. 2021, 23, 10081–10096. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.; Tang, G.; Geng, W. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Idrees, M.; Nguyen, C.V.; Bui, H.D.; Ahmad, I.; Amin, B. Van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: Enhanced optoelectronic and photocatalytic properties for water splitting. Phys. Chem. Chem. Phys. 2020, 22, 20704–20711. [Google Scholar] [CrossRef]
- Shahid, I.; Ali, A.; Zhang, J.; Muhammad, I.; Ahmad, I.; Kabir, F. Two dimensional MoSSe/BSe vdW heterostructures as potential photocatalysts for water splitting with high carrier mobilities. Int. J. Hydrogen Energy 2021, 46, 14247–14258. [Google Scholar] [CrossRef]
- Din, H.; Idrees, M.; Alam, Q.; Amin, B. Van der Waal heterostructure based on BY (Y = As, P) and MX2 (M = Mo, W; X = S, Se) monolayers. Appl. Surf. Sci. 2021, 568, 150846. [Google Scholar] [CrossRef]
- Bardeen, J.; Shockley, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 72–80. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Wu, G.; Chen, J.; Li, Y. DFT study on the electronic structure and optical properties of N, Al, and N-Al doped graphene. Appl. Surf. Sci. 2018, 459, 354–362. [Google Scholar] [CrossRef]
Sample | Heterojunction Type | Application | Year | Ref. |
---|---|---|---|---|
Pr-SnS2/ZnS hierarchical nanoflowers | Type-I | NH3 sensing | 2019 | [38] |
SnS2/ZnS microspheres | Type- I | Triethylamine detection | 2021 | [39] |
ZnS-SnS2 porous nanosheets | Quasi type-Ⅱ | Hydrogen production | 2018 | [40] |
ZnS/SnS2 heterojunction | Type-Ⅱ | — | 2018 | [41] |
SnS2-ZnS/clinoptilolite | Z-scheme | Photodegradation of phenol | 2020 | [42] |
ZnS/SnS2 heterojunction | Z-scheme | Tetracycline degradation | 2020 | [43] |
Models | d (Å) | LZn-S(a) (Å) | LZn-S(b) (Å) | LSn-S (Å) | Eb (meV/Å2) |
---|---|---|---|---|---|
H1 | 3.62 | 2.28 | 2.61 | 2.62 | −12.03 |
H2 | 3.01 | 2.28 | 2.62 | 2.62 | −18.37 |
H3 | 2.95 | 2.28 | 2.62 | 2.63 | −18.58 |
H4 | 3.00 | 2.28 | 2.62 | 2.63 | −18.63 |
H5 | 3.61 | 2.28 | 2.61 | 2.62 | −12.05 |
H6 | 2.97 | 2.28 | 2.61 | 2.62 | −18.19 |
Type | Direction | Carrier Type | m* (m0) | E1(eV) | C2D (J m−2) | μ (cm2 V−1 S−1) |
---|---|---|---|---|---|---|
H3 | Armchair (x) | e | 0.91 | −1.30 | 135.82 | 3555.04 |
h | −1.11 | −3.04 | 135.82 | 218.65 | ||
Zigzag (y) | e | 0.31 | −2.93 | 135.14 | 2044.07 | |
h | −1.51 | −2.90 | 135.14 | 175.74 | ||
H4 | Armchair (x) | e | 0.89 | −0.98 | 133.61 | 6362.56 |
h | −1.43 | −2.37 | 133.61 | 255.96 | ||
Zigzag (y) | e | 0.31 | −2.75 | 138.22 | 2399.82 | |
h | −1.35 | −2.52 | 138.22 | 249.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhao, C.; Wu, H.; Shi, Y.; Chen, C.; Zhou, X. Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study. Materials 2022, 15, 3786. https://doi.org/10.3390/ma15113786
Chen X, Zhao C, Wu H, Shi Y, Chen C, Zhou X. Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study. Materials. 2022; 15(11):3786. https://doi.org/10.3390/ma15113786
Chicago/Turabian StyleChen, Xing, Cuihua Zhao, Hao Wu, Yong Shi, Cuiting Chen, and Xi Zhou. 2022. "Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study" Materials 15, no. 11: 3786. https://doi.org/10.3390/ma15113786
APA StyleChen, X., Zhao, C., Wu, H., Shi, Y., Chen, C., & Zhou, X. (2022). Two-Dimensional ZnS/SnS2 Heterojunction as a Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study. Materials, 15(11), 3786. https://doi.org/10.3390/ma15113786