CFRP Fatigue Damage Detection by Thermal Methods
Abstract
:1. Introduction
2. Materials and Methods
Fatigue Tests: Thermographic Analysis
3. Results and Discussions
- The linear part of the stiffness trend is identified as a function of the number of cycles;
- The linear trend of the stiffness is traced as a function of the number of cycles through two points: (0; R0lin) and (0.9 Nfailure; R90lin); the first point is obtained by extrapolating the trend line up to the ordinate axis, obtaining the ideal stiffness value at cycle 0, and the second point is obtained by considering the stiffness value at 90% of the specimen’s life R90lin;
- Based on these values, the percentage change in stiffness ΔR% is calculated through the following equation:
- Index D increases proportionally to the applied load. The curves are placed on increasing damage levels as a function of the load, with the exception of the minimum load of 1190 MPa, which is at an intermediate level;
- The three regions corresponding to the different fracture mechanisms in composite laminates are clearly identifiable [16];
- Region I, corresponding to the primary fracture of the matrix, can be highlighted by examining the very first cycles of fatigue (Figure 6b). It is noted that the slope of this phase is very pronounced;
- In region II, called the characteristic state of damage (CDS), the fracture mechanisms between fibers and matrix interact with each other; as the number of cycles increases, the curve presents, in this section, a linear trend but with a less pronounced slope than in region I. It is noted that the behaviors relating to the various load levels present almost identical slopes, generating almost parallel curves;
- Finally, the third region (III) was identified. In it occurs the fracture of the fibers and the consequent rupture of the specimen. This phase takes place in a very short time. There is no warning regarding a possible failure of the specimen in the final part of its useful life;
- The progressive fatigue damage was then followed up by examining the recorded temperature maps. As expected, after a short transient, the temperature of each specimen first undergoes a slow increase, stabilizes at a steady state around a constant value, and then rapidly increases in the terminal phase.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xian, G.; Guo, R.; Li, C. Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite. Compos. Struct. 2022, 281, 115060. [Google Scholar] [CrossRef]
- Li, C.; Yin, X.; Wang, Y.; Zhang, L.; Zhang, Z.; Liu, Y.; Xian, G. Mechanical property evolution and service life prediction of pultruded carbon/glass hybrid rod exposed in harsh oil-well condition. Compos. Struct. 2020, 246, 112418. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, C.; Hong, B. Effect of fiber hybrid mode on the tension—Tension fatigue performance for the pultruded carbon/glass fiber reinforced polymer composite rod. Eng. Fract. Mech. 2022, 260, 108208. [Google Scholar] [CrossRef]
- Demers, C.E. Fatigue strength degradation of E-glass FRP composites and carbon FRP composites. Constr. Build. Mater. 1998, 12, 311–318. [Google Scholar] [CrossRef]
- Barron, V.; Buggy, M.; Mckenna, N.H. Frequency effects on the fatigue behaviour on carbon fibre reinforced polymer laminates. J. Mater. Sci. 2001, 36, 1755–1761. [Google Scholar] [CrossRef]
- Demers, C.E. Tension—tension axial fatigue of E-glass fiber-reinforced polymeric composites: Tensile fatigue modulus. Constr. Build. Mater. 1998, 12, 51–58. [Google Scholar] [CrossRef]
- Gamstedt, E.K.; Talreja, R. Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics. J. Mater. Sci. 1999, 34, 2635–4266. [Google Scholar] [CrossRef]
- Dong, H.; Li, Z.; Wang, J.; Karihaloo, B.L. A new fatigue failure theory for multidirectional fiber-reinforced composite laminates with arbitrary stacking sequence. Int. J. Fatigue 2016, 87, 294–300. [Google Scholar] [CrossRef]
- Lasri, L.; Nouari, M.; Mansori, M.E. Wear resistance and induced cutting damage of aeronautical FRP components obtained by machining. Wear 2011, 271, 2542–2548. [Google Scholar] [CrossRef]
- Shao, Y.; Okubo, K.; Fujii, T.; Shibata, O.; Fujita, Y. Effect of matrix properties on the fatigue damage initiation and its growth in plain woven carbon fabric vinylester composites. Compos. Sci. Technol. 2014, 104, 125–135. [Google Scholar] [CrossRef]
- Hartwig, G.; Hubner, R.; Knaak, S.; Pannkoke, C. Fatigue Behavior of Composites; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Tong, J.; Guild, F.J.; Ogin, S.L.; Smith, P.A. On matrix crack growth in quasi isotropic laminates—I. Experimental investigation. Compos. Sci. Technol. 1997, 57, 1527–1535. [Google Scholar] [CrossRef]
- Bartley-Cho, J.; Lim, S.G.; Hahn, H.T.; Shyprykevich, P. Damage accumulation in quasi-isotropic graphite/epoxy laminates under constant-amplitude fatigue and block loading. Compos. Sci. Technol. 1998, 58, 1535–1547. [Google Scholar] [CrossRef]
- Wharmby, A.W.; Ellyin, F. Damage growth in constrained angle-ply laminates under cyclic loading. Compos. Sci. Technol. 2022, 62, 1239–1247. [Google Scholar] [CrossRef]
- Tohgo, K.; Nakagawa, S.; Kageyama, K. Fatigue behaviour of CFRP cross-ply laminates under on-axis and off-axis cyclic loading. Int. J. Fatigue 2006, 28, 1254–1262. [Google Scholar] [CrossRef]
- Adden, S.; Horst, P. Stiffness degradation under fatigue in multiaxially loaded non-crimped-fabrics. Int. J. Fatigue 2010, 32, 108–122. [Google Scholar] [CrossRef]
- Quaresimin, M.; Carraro, P.A.; Mikkelsen, L.P.; Lucato, N.; Vivian, L.; Brøndsted, P.; Sørensen, B.F.; Varna, J.; Talreja, R. Damage evolution under internal and external multiaxial cyclic stress state: A comparative analysis. Compos. Part B Eng. 2014, 61, 282–290. [Google Scholar] [CrossRef]
- Quaresimin, M.; Carraro, P.A. Damage initiation and evolution in glass/epoxy tubes subjected to combined tension–torsion fatigue loading. Int. J. Fatigue 2014, 63, 25–35. [Google Scholar] [CrossRef]
- Whitworth, H.A. A stiffness degradation model for composite laminates under fatigue loading. Compos. Struct. 1997, 40, 95–101. [Google Scholar] [CrossRef]
- Zhang, Y.; Vassilopoulos, A.P.; Keller, T. Stiffness degradation and fatigue life prediction of adhesively-bonded joints for fiber-reinforced polymer composites. Int. J. Fatigue 2008, 30, 1813–1820. [Google Scholar] [CrossRef]
- Khan, A.I.; Venkataraman, S.; Miller, I. Predicting Fatigue Damage of Composites Using Strength Degradation and Cumulative Damage Model. J. Compos. Sci. 2018, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Pineda, E.J.; Bednarcyk, B.A.; Arnold, S.M. Validated progressive damage analysis of simple polymer matrix composite laminates exhibiting matrix microdamage: Comparing macromechanics and micromechanics. Compos. Sci. Technol. 2016, 133, 184–191. [Google Scholar] [CrossRef]
- Carraro, P.A.; Quaresimin, M. A stiffness degradation model for cracked multidirectional laminates with cracks in multiple layers. Int. J. Solids Struct. 2015, 58, 34–51. [Google Scholar] [CrossRef]
- Carraro, P.A.; Quaresimin, M. Fatigue damage and stiffness evolution in composite laminates: A damage-based framework. Procedia Eng. 2018, 213, 17–24. [Google Scholar] [CrossRef]
- Skinner, T.; Datta, S.; Chattopadhyay, A.; Hall, A. Fatigue damage behavior in carbon fiber polymer composites under biaxial loading. Compos. Part B Eng. 2019, 174, 106942. [Google Scholar] [CrossRef]
- Russo, A.; Sellitto, A.; Curatolo, P.; Acanfora, V.; Saputo, S.; Riccio, A. A Robust Numerical Methodology for Fatigue Damage Evolution Simulation in Composites. Materials 2021, 14, 3348. [Google Scholar] [CrossRef]
- De Finis, D.R.; Palumbo, U.; Galietti, U. Fatigue damage analysis of composite materials using thermography-based techniques. Procedia Struct. Integr. 2019, 18, 781–791. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J. Experimental and Analytical Study on Residual Stiffness/Strength of CFRP Tendons under Cyclic Loading. Materials 2020, 13, 5653. [Google Scholar] [CrossRef]
- ASTM D3479; Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2012.
- Mao, H.; Mahadevan, S. Fatigue Damage Modelling of Composite Materials. Compos. Struct. 2002, 58, 405–410. [Google Scholar] [CrossRef]
- Giancane, S.; Panella, F.W.; Dattoma, V. Characterization of fatigue damage in long fiber epoxy composite laminates. Int. J. Fatigue 2010, 32, 46–53. [Google Scholar] [CrossRef]
- Shirazi, A.; Varvani-Farahani, A. A Stiffness Degradation Based Fatigue Damage Model for FRP Composites of () Laminate Systems. Appl. Compos. Mater. 2010, 17, 137–150. [Google Scholar] [CrossRef]
% Fibers Volume | Young Modulus EL [MPa] | Strain at Break εr [%] | Tensile Strength Rm [MPa] |
---|---|---|---|
57 | 134,000 | 1.41 | 2005 |
St. DEV. | 2.08 | 0.04 | 66.81 |
Specimen ID | Cycles to Failure | St. DEV. | Mean | ||
---|---|---|---|---|---|
1b | 1445 | 650.25 | 9142 | 311,056 | 202,366 |
2b | 1445 | 650.25 | 22,838 | ||
11b | 1445 | 650.25 | 663,724 | ||
12b | 1445 | 650.25 | 113,760 | ||
13b | 1360 | 612 | 5341 | 1,108,944 | 793,985 |
14b | 1360 | 612 | 2,403,990 | ||
15 | 1360 | 612 | 645,866 | ||
15b | 1360 | 612 | 120,743 | ||
7 | 1275 | 573.75 | 231,627 | 1,714,496 | 1,120,118 |
7b | 1275 | 573.75 | 5815 | ||
8b | 1275 | 573.75 | 3,667,770 | ||
8 | 1190 | 535.5 | 2,827,231 | 1,889,456 | 2,593,927 |
12 | 1190 | 535.5 | 4,519,757 | ||
16 | 1190 | 535.5 | 4,298,182 | ||
16b | 1190 | 535.5 | 388,787 | ||
17b | 1190 | 535.5 | 935,676 | ||
9b | 1100 | 495 | 10,000,000 | 0 | 10,000,000 |
13 | 1100 | 495 | 10,000,000 | ||
14 | 1100 | 495 | 10,000,000 |
Specimen | σmax [MPa] | ΔR% | Cycles to Rupture |
---|---|---|---|
1b | 1445 | 4.39 | 9142 |
2b | 1445 | 3.41 | 22,838 |
11b | 1445 | 8.70 | 663,724 |
12b | 1445 | 6.07 | 113,760 |
13b | 1360 | 4.26 | 5341 |
14b | 1360 | 10.83 | 2,403,990 |
15 | 1360 | 9.88 | 645,866 |
15b | 1360 | 5.80 | 120,743 |
7 | 1275 | 1.10 | 231,627 |
7b | 1275 | 5.19 | 5815 |
8b | 1275 | 7.00 | 3,667,770 |
8 | 1190 | 5.62 | 2,827,231 |
12 | 1190 | 10.68 | 4,519,757 |
16 | 1190 | 15.66 | 4,298,182 |
16b | 1190 | 9.23 | 388,787 |
17b | 1190 | 9.74 | 935,676 |
Specimen | σmax [MPa] | σa [MPa] | N | Heating Rate [°C/Cycle] | ΔT [°C] | ΔR% | D90% |
---|---|---|---|---|---|---|---|
1b | 1445 | 650 | 9142 | 0.0110 | 41 | 4.39 | 0.99 |
2b | 1445 | 650 | 22,838 | 0.0173 | 37 | 3.41 | 0.76 |
14b | 1360 | 612 | 2,403,990 | 0.0098 | 41 | 10.83 | 0.76 |
13b | 1360 | 612 | 5341 | 0.0057 | 40 | 4.26 | 0.88 |
8b | 1275 | 574 | 3,667,770 | 0.0024 | 34 | 7.00 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Giorgi, M.; Nobile, R.; Palano, F. CFRP Fatigue Damage Detection by Thermal Methods. Materials 2022, 15, 3787. https://doi.org/10.3390/ma15113787
De Giorgi M, Nobile R, Palano F. CFRP Fatigue Damage Detection by Thermal Methods. Materials. 2022; 15(11):3787. https://doi.org/10.3390/ma15113787
Chicago/Turabian StyleDe Giorgi, Marta, Riccardo Nobile, and Fania Palano. 2022. "CFRP Fatigue Damage Detection by Thermal Methods" Materials 15, no. 11: 3787. https://doi.org/10.3390/ma15113787
APA StyleDe Giorgi, M., Nobile, R., & Palano, F. (2022). CFRP Fatigue Damage Detection by Thermal Methods. Materials, 15(11), 3787. https://doi.org/10.3390/ma15113787