Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bone-Substitute Materials
2.2. Chick Embryo Chorioallantoic Membrane Assay
2.3. Immunohistochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Chorioallantoic Membrane Assay
3.2. Immunohistochemical Analysis of Angiogenesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kloss, F.R.; Offermanns, V.; Kloss-Brandstätter, A. Comparison of allogeneic and autogenous bone grafts for augmentation of alveolar ridge defects—A 12-month retrospective radiographic evaluation. Clin. Oral Implant. Res. 2018, 29, 1163–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Moraissi, E.; Alkhutari, A.; Abotaleb, B.; Altairi, N.; Del Fabbro, M. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int. J. Oral Maxillofac. Surg. 2020, 49, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; García, A.J. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev. 2015, 94, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, F.; Wei, L.; Yu, D.; Deng, L.; Zheng, Y.; Lin, H.; Liu, Y. Vertical bone augmentation with simultaneous implantation using deproteinized bovine bone block functionalized with a slow delivery of BMP-2. Clin. Oral Implant. Res. 2020, 31, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Blatt, S.; Thiem, D.G.E.; Kyyak, S.; Pabst, A.; Al-Nawas, B.; Kämmerer, P.W. Possible Implications for Improved Osteogenesis? The Combination of Platelet-Rich Fibrin with Different Bone Substitute Materials. Front. Bioeng. Biotechnol. 2021, 9, 186. [Google Scholar] [CrossRef]
- Kyyak, S.; Blatt, S.; Pabst, A.; Thiem, D.; Al-Nawas, B.; Kämmerer, P.W. Combination of an allogenic and a xenogenic bone substitute material with injectable platelet-rich fibrin—A comparative in vitro study. J. Biomater. Appl. 2020, 35, 83–96. [Google Scholar] [CrossRef]
- Kyyak, S.; Blatt, S.; Schiegnitz, E.; Heimes, D.; Staedt, H.; Thiem, D.G.E.; Sagheb, K.; Al-Nawas, B.; Kämmerer, P.W. Activation of human osteoblasts via different bovine bone substitute materials with and without injectable platelet rich fibrin in vitro. Front. Bioeng. Biotechnol. 2021, 9, 71. [Google Scholar] [CrossRef]
- Kyyak, S.; Pabst, A.; Heimes, D.; Kämmerer, P. of The Influence of Hyaluronic Acid Biofunctionalization a Bovine Bone Substitute on Osteoblast Activity In Vitro. Materials 2021, 14, 2885. [Google Scholar] [CrossRef]
- Blatt, S.; Burkhardt, V.; Kämmerer, P.W.; Pabst, A.M.; Sagheb, K.; Heller, M.; Al-Nawas, B.; Schiegnitz, E. Biofunctionalization of porcine-derived collagen matrices with platelet rich fibrin: Influence on angiogenesis in vitro and in vivo. Clin. Oral Investig. 2020, 24, 3425–3436. [Google Scholar] [CrossRef] [Green Version]
- Kämmerer, P.W.; Schiegnitz, E.; Alshihri, A.; Draenert, F.G.; Wagner, W. Modification of xenogenic bone substitute materials—Effects on the early healing cascade in vitro. Clin. Oral Implant. Res. 2014, 25, 852–858. [Google Scholar] [CrossRef]
- Kämmerer, P.W.; Schiegnitz, E.; Palarie, V.; Dau, M.; Frerich, B.; Al-Nawas, B. Influence of platelet-derived growth factor on osseous remodeling properties of a variable-thread tapered dental implant in vivo. Clin. Oral Implant. Res. 2017, 28, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Kämmerer, P.W.; Scholz, M.; Baudisch, M.; Liese, J.; Wegner, K.; Frerich, B.; Lang, H. Guided bone regeneration using collagen scaffolds, growth factors, and periodontal ligament stem cells for treatment of peri-implant bone defects in vivo. Stem Cells Int. 2017, 2017, 3548435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, M.; Ariyoshi, W.; Iwanaga, K.; Okinaga, T.; Habu, M.; Yoshioka, I.; Tominaga, K.; Nishihara, T. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid. Biochem. Biophys. Res. Commun. 2011, 405, 575–580. [Google Scholar] [CrossRef]
- Božić, D.; Ćatović, I.; Badovinac, A.; Musić, L.; Par, M.; Sculean, A. Treatment of Intrabony Defects with a Combination of Hyaluronic Acid and Deproteinized Porcine Bone Mineral. Materials 2021, 14, 6795. [Google Scholar] [CrossRef] [PubMed]
- Price, R.D.; Berry, M.; Navsaria, H.A. Hyaluronic acid: The scientific and clinical evidence. J. Plast. Reconstr. Aesthetic Surg. 2007, 60, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Balazs, E.A.; Laurent, T.C.; Jeanloz, R.W. Nomenclature of hyaluronic acid. Biochem. J. 1986, 235, 903. [Google Scholar] [CrossRef] [PubMed]
- Neo, H.; Ishimaru, J.-I.; Kurita, K.; Goss, A.N. The effect of hyaluronic acid on experimental temporomandibular joint osteoarthrosis in the sheep. J. Oral Maxillofac. Surg. 1997, 55, 1114–1119. [Google Scholar] [CrossRef]
- Barbucci, R.; Lamponi, S.; Borzacchiello, A.; Ambrosio, L.; Fini, M.; Torricelli, P.; Giardino, R. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 2002, 23, 4503–4513. [Google Scholar] [CrossRef]
- Uthman, I.; Raynauld, J.; Haraoui, B. Intra-articular therapy in osteoarthritis. Postgrad. Med. J. 2003, 79, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Medina, J.M.; Thomas, A.; Denegar, C.R. Knee osteoarthritis: Should your patient opt for hyaluronic acid injection? A meta-analysis of hyaluronic acid’s effects on pain, stiffness, and disability. J. Fam. Pract. 2006, 55, 669–676. [Google Scholar]
- Brown, M.B.; Jones, S.A. Hyaluronic acid: A unique topical vehicle for the localized delivery of drugs to the skin. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Lisignoli, G.; Fini, M.; Giavaresi, G.; Aldini, N.N.; Toneguzzi, S.; Facchini, A. Osteogenesis of large segmental radius defects enhanced by basic fibroblast growth factor activated bone marrow stromal cells grown on non-woven hyaluronic acid-based polymer scaffold. Biomaterials 2002, 23, 1043–1051. [Google Scholar] [CrossRef]
- Schiller, S. Synthesis of hyaluronic acidbby a soluble enzyme system from mammalian tissue. Biochem. Biophys. Res. Commun. 1964, 15, 250–255. [Google Scholar] [CrossRef]
- Laurent, T. Introduction in Ciba Foundation Symposium. In The Biology of Hyaluronan; John Wikey & Sons: Hoboken, NJ, USA, 1989. [Google Scholar]
- Pirnazar, P.; Wolinsky, L.; Nachnani, S.; Haake, S.; Pilloni, A.; Bernard, G.W. Comparative chemical evaluation of two commercially available derivatives of hyaluronic acid (Hylaform® from rooster combs and Restylane® from streptococcus) used for soft tissue augmentation. J. Eur. Acad. Dermatol. Venereol. 1999, 13, 183–192. [Google Scholar]
- Jansen, K.; van der Werff, J.; van Wachem, P.; Nicolai, J.-P.; de Leij, L.; van Luyn, M. A hyaluronan-based nerve guide: In vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials 2004, 25, 483–489. [Google Scholar] [CrossRef]
- Pirnazar, P.; Wolinsky, L.; Nachnani, S.; Haake, S.; Pilloni, A.; Bernard, G.W. Bacteriostatic effects of hyaluronic acid. J. Periodontol. 1999, 70, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Amarnath, L.P.; Srinivas, A.; Ramamurthi, A. In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels. Biomaterials 2006, 27, 1416–1424. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Okamoto, A.; Nishinari, K. Viscoelasticity of hyaluronic acid with different molecular weights. Biorheology 1994, 31, 235–244. [Google Scholar] [CrossRef]
- Oertli, B.; Fan, X.; Wüthrich, R.P. Characterization of CD44-mediated hyaluronan binding by renal tubular epithelial cells. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 1998, 13, 271–278. [Google Scholar]
- Chen, W.; Abatangelo, G. Functions of hyaluronan in wound repair. Wound Repair Regen 1999, 7, 79. [Google Scholar] [CrossRef]
- Greco, R.M.; Iocono, J.A.; Ehrlich, H.P. Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix. J. Cell. Physiol. 1998, 177, 465–473. [Google Scholar] [CrossRef]
- Rooney, P.; Kumar, S. Inverse relationship between hyaluronan and collagens in development and angiogenesis. Differentiation 1993, 54, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mast, B.A.; Diegelmann, R.F.; Krummel, T.M.; Cohen, I.K. Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts. Matrix 1993, 13, 441–446. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, X.; Qin, L.; Guo, Z.; Li, D. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro. Biochem. Biophys. Res. Commun. 2015, 465, 569–574. [Google Scholar] [CrossRef]
- Raines, A.L.; Sunwoo, M.; Gertzman, A.A.; Thacker, K.; Guldberg, R.E.; Schwartz, Z.; Boyan, B.D. Hyaluronic acid stimulates neovascularization during the regeneration of bone marrow after ablation. J. Biomed. Mater. Res. Part A 2011, 96, 575–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, D.C.; Hampson, I.N.; Arnold, F.; Kumar, S. Angiogenesis induced by degradation products of hyaluronic acid. Science 1985, 228, 1324–1326. [Google Scholar] [CrossRef] [PubMed]
- Mio, K.; Stern, R. Inhibitors of the hyaluronidases. Matrix Biol. 2002, 21, 31–37. [Google Scholar] [CrossRef]
- West, D.; Kumar, S. Hyaluronan and angiogenesis. Biol. Hyaluronan 1989, 143, 187–207. [Google Scholar]
- Feinberg, R.N.; Beebe, D.C. Hyaluronate in vasculogenesis. Science 1983, 220, 1177–1179. [Google Scholar] [CrossRef]
- Sasaki, T.; Watanabe, C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 1995, 16, 9–15. [Google Scholar] [CrossRef]
- Leeson, T.; Leeson, C. The chorio-allantois of the chick. Light and electron microscopic observations at various times of incubation. J. Anat. 1963, 97 Pt 4, 585. [Google Scholar]
- Ribatti, D. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int. Rev. Cell Mol. Biol. 2008, 270, 181–224. [Google Scholar] [PubMed]
- Cimpean, A.M.; Ribatti, D.; Raica, M. The chick embryo chorioallantoic membrane as a model to study tumor metastasis. Angiogenesis 2008, 11, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Heimes, D.; Wiesmann, N.; Eckrich, J.; Brieger, J.; Mattyasovszky, S.; Proff, P.; Weber, M.; Deschner, J.; Al-Nawas, B.; Kämmerer, P. In Vivo Modulation of Angiogenesis and Immune Response on a Collagen Matrix via Extracorporeal Shockwaves. Int. J. Mol. Sci. 2020, 21, 7574. [Google Scholar] [CrossRef]
- Wiesmann, N.; Mendler, S.; Buhr, C.R.; Ritz, U.; Kämmerer, P.W.; Brieger, J. Zinc Oxide Nanoparticles Exhibit Favorable Properties to Promote Tissue Integration of Biomaterials. Biomedicines 2021, 9, 1462. [Google Scholar] [CrossRef]
- Ribatti, D. Chicken chorioallantoic membrane angiogenesis model. In Cardiovascular Development; Springer: Berlin/Heidelberg, Germany, 2012; pp. 47–57. [Google Scholar]
- Cirligeriu, L.; Cimpean, A.M.; Calniceanu, H.; Vladau, M.; Sarb, S.; Raica, M.; Nica, L. Hyaluronic acid/bone substitute complex implanted on chick embryo chorioallantoic membrane induces osteoblastic differentiation and angiogenesis, but not inflammation. Int. J. Mol. Sci. 2018, 19, 4119. [Google Scholar] [CrossRef] [Green Version]
- Toole, B.P.; Wight, T.N.; Tammi, M.I. Hyaluronan-cell interactions in cancer and vascular disease. J. Biol. Chem. 2002, 277, 4593–4596. [Google Scholar] [CrossRef] [Green Version]
- Turley, E.A.; Noble, P.W.; Bourguignon, L.Y. Signaling properties of hyaluronan receptors. J. Biol. Chem. 2002, 277, 4589–4592. [Google Scholar] [CrossRef] [Green Version]
- Hascall, V.C.; Majors, A.K.; De La Motte, C.A.; Evanko, S.P.; Wang, A.; Drazba, J.A.; Strong, S.A.; Wight, T.N. Intracellular hyaluronan: A new frontier for inflammation? Biochim. Biophys. Acta—Gen. Subj. 2004, 1673, 3–12. [Google Scholar] [CrossRef]
- Camenisch, T.D.; Spicer, A.P.; Brehm-Gibson, T.; Biesterfeldt, J.; Augustine, M.L.; Calabro, A.; Kubalak, S.; Klewer, S.E.; McDonald, J.A. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Investig. 2000, 106, 349–360. [Google Scholar] [CrossRef] [Green Version]
- Banerji, S.; Ni, J.; Wang, S.X.; Clasper, S.; Su, J.; Tammi, R.; Jones, M.; Jackson, D.G. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 1999, 144, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Girish, K.; Kemparaju, K. Inhibition of Naja naja venom hyaluronidase: Role in the management of poisonous bite. Life Sci. 2006, 78, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Balazs, E.; Denlinger, J. The role of hyaluronic acid in arthritis and its therapeutic use. Osteoarthr. Curr. Clin. Fundam. Probl. 1984, 165, 174. [Google Scholar]
- Baier Leach, J.; Schmidt, C.E. Hyaluronan. In Encyclopedia of Biomaterials and Biomedical Engineering; CRC Press: Boca Raton, FL, USA, 2004; pp. 779–789. [Google Scholar]
- Zou, L.; Zou, X.; Chen, L.; Li, H.; Mygind, T.; Kassem, M.; Bünger, C. Effect of hyaluronan on osteogenic differentiation of porcine bone marrow stromal cells in vitro. J. Orthop. Res. 2008, 26, 713–720. [Google Scholar] [CrossRef]
- Senger, D.R. Molecular framework for angiogenesis: A complex web of interactions between extravasated plasma proteins and endothelial cell proteins induced by angiogenic cytokines. Am. J. Pathol. 1996, 149, 1. [Google Scholar]
- Yang, E.Y.; Moses, H.L. Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J. Cell Biol. 1990, 111, 731–741. [Google Scholar] [CrossRef]
- Pilloni, A.; Rojas, M.A.; Marini, L.; Russo, P.; Shirakata, Y.; Sculean, A.; Iacono, R. Healing of intrabony defects following regenerative surgery by means of single-flap approach in conjunction with either hyaluronic acid or an enamel matrix derivative: A 24-month randomized controlled clinical trial. Clin. Oral Investig. 2021, 25, 5095–5107. [Google Scholar] [CrossRef]
- Brooks, P.C.; Montgomery, A.M.; Cheresh, D.A. Use of the 10-day-old chick embryo model for studying angiogenesis. In Integrin Protocols; Humana Press: Totowa, NJ, USA, 1999; pp. 257–269. [Google Scholar]
- Risau, W.; Lemmon, V. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol. 1988, 125, 441–450. [Google Scholar] [CrossRef]
- D’amore, P.; Thompson, R. Mechanisms of angiogenesis. Annu. Rev. Physiol. 1987, 49, 453–464. [Google Scholar] [CrossRef]
- Auerbach, W.; Auerbach, R. Angiogenesis inhibition: A review. Pharmacol. Ther. 1994, 63, 265–311. [Google Scholar] [CrossRef]
- Ausprunk, D.H.; Knighton, D.R.; Folkman, J. Differentiation of vascular endothelium in the chick chorioallantois: A structural and autoradiographic study. Dev. Biol. 1974, 38, 237–248. [Google Scholar] [CrossRef]
- Wilting, J.; Christ, B.; Weich, H.A. The effects of growth factors on the day 13 chorioallantoic membrane (CAM): A study of VEGF165 and PDGF-BB. Anat. Embryol. 1992, 186, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Franzmann, E.J.; Schroeder, G.L.; Goodwin, W.J.; Weed, D.T.; Fisher, P.; Lokeshwar, V.B. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int. J. Cancer 2003, 106, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Ohya, S.; Nakayama, Y.; Matsuda, T. Thermoresponsive artificial extracellular matrix for tissue engineering: Hyaluronic acid bioconjugated with poly (N-isopropylacrylamide) grafts. Biomacromolecules 2001, 2, 856–863. [Google Scholar] [CrossRef]
- Zhong, S.P.; Campoccia, D.; Doherty, P.J.; Williams, R.L.; Benedetti, L.; Williams, D.F. Biodegradation of hyaluronic acid derivatives by hyaluronidase. Biomaterials 1994, 15, 359–365. [Google Scholar] [CrossRef]
- Varma, R.; Allen, W.; Wardi, A. Human umbilical cord hyaluronate neutral sugar content and carbohydrate-protein linkage studies. Biochim. Biophys. Acta—Gen. Subj. 1975, 399, 139–144. [Google Scholar] [CrossRef]
- Park, J.W.; Chakrabarti, B. Conformational transition of hyaluronic acid carboxylic group participation and thermal effect. Biochim. Biophys. Acta—Gen. Subj. 1978, 541, 263–269. [Google Scholar] [CrossRef]
- Knighton, D.; Fiegel, V.; Phillips, G. The assay of angiogenesis. Prog. Clin. Biol. Res. 1991, 365, 291–299. [Google Scholar]
- Jakob, W.; Jentzsch, K.; Mauersberger, B.; Heder, G. The chick embryo chorioallantoic membrane as a bioassay for angiogenesis factors: Reactions induced by carrier materials. Exp. Pathol. 1978, 15, 241–249. [Google Scholar] [CrossRef]
BSM | BSM+ | |||
---|---|---|---|---|
Vessels | Branching Points | Vessels | Branching Points | |
Median | 7 | 4 | 34.5 | 20 |
MWT | 0.00001 | 0.00001 | 0.00001 | 0.00001 |
KWT | 0.00001 | 0.00001 | 0.00001 | 0.00001 |
BSM | ||||
Total Vessel Area | Total Vessel Length | Mean Vessel Thickness | Number of Branching Points | |
Mean/median | 4.07 × 105 ± 0.57 × 105 * | 560 ± 70.58 ** | 35.5 × 103 ± 21.1 × 103 # | 10.46 ± 1.56 ## |
BSM+ | ||||
Total Vessel Area | Vessel Total Length | Vessel Mean Thickness | Number of Branching Points | |
Mean/median | 7.19 × 105 ± 0.5 × 105 * | 914.17 ± 42.08 ** | 30.34 × 103 ± 2.27 ×103 # | 23.88 ± 1.38 ## |
t-test | * p = 0.0001; ** p = 0.001 | |||
KWT | # p = 0.091; ## p = 0.001 |
H&E | BSM | BSM+ | ||||
Average Vessel Area | Total Vessel Area | Brightness Integration | Average Vessel Area | Total Vessel Area | Brightness Integration | |
Mean/median | 3388.07 ± 539.16 * | 8.24 × 105 ± 1.91 ×105 ** | 2.34 × 104 # | 3089.16 ± 974.60 * | 24.43 × 105 ± 6.32 × 105 ** | 3.12 × 104 # |
T-test | * p = 0.80; ** p = 0.0001 | |||||
MWT | # p = 0.047 | |||||
KWT | * p = 0.16; ** p = 0.001; # p = 0.05 | |||||
alphaSMA | BSM | BSM+ | ||||
Average Vessel Area | Total Vessel Area | Average Vessel Area | Total Vessel Area | |||
Mean/median | 1400.68 * | 16.27 × 105 ± 5.56 × 105 ** | 3038.46 * | 42.0 × 105 ** | ||
MWT | * p = 0.13; ** p = 0.037 | |||||
KWT | * p = 0.12; ** p = 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyyak, S.; Blatt, S.; Wiesmann, N.; Smeets, R.; Kaemmerer, P.W. Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In Vivo. Materials 2022, 15, 3839. https://doi.org/10.3390/ma15113839
Kyyak S, Blatt S, Wiesmann N, Smeets R, Kaemmerer PW. Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In Vivo. Materials. 2022; 15(11):3839. https://doi.org/10.3390/ma15113839
Chicago/Turabian StyleKyyak, Solomiya, Sebastian Blatt, Nadine Wiesmann, Ralf Smeets, and Peer W. Kaemmerer. 2022. "Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In Vivo" Materials 15, no. 11: 3839. https://doi.org/10.3390/ma15113839
APA StyleKyyak, S., Blatt, S., Wiesmann, N., Smeets, R., & Kaemmerer, P. W. (2022). Hyaluronic Acid with Bone Substitutes Enhance Angiogenesis In Vivo. Materials, 15(11), 3839. https://doi.org/10.3390/ma15113839