Osseointegration of Zirconia Implants after UV-Light or Cold Atmospheric Plasma Surface Treatment In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implants
2.2. Surface Treatments
2.3. Animals
2.4. Surgical Procedures
2.5. Histomorphometrical Preparation and Analysis
2.6. Statistical Analysis
3. Results
3.1. Scanning Electron Microscopy
3.2. Animal Evaluation
3.3. Macroscopic and Radiological Evaluation
3.4. Histomorphometrical Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brånemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Ohman, A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. Suppl. 1977, 16, 1–132. [Google Scholar]
- Smeets, R.; Stadlinger, B.; Schwarz, F.; Beck-Broichsitter, B.; Jung, O.; Precht, C.; Kloss, F.; Gröbe, A.; Heiland, M.; Ebker, T. Impact of Dental Implant Surface Modifications on Osseointegration. BioMed Res. Int. 2016, 2016, 6285620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depprich, R.; Naujoks, C.; Ommerborn, M.; Schwarz, F.; Kubler, N.R.; Handschuh, J. Current findings regarding zirconia implants. Clin. Implant. Dent. Relaxt. Res. 2014, 16, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I. Yttrium-partially stabilized zirconium dioxide posts: An approach to restoring coronally compromised nonmetal teeth. Int. J. Periodont. Restor. Dent. 1998, 18, 454–465. [Google Scholar]
- Hisbergues, M.; Vendeville, S.; Vendeville, P. Zirconia: Established facts and perspectives for a biomaterial in dental implantology. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88, 519–529. [Google Scholar] [CrossRef]
- Schenk, R.K.; Buser, D. Osseointegration: A reality. Periodontology 2000 1998, 17, 22–35. [Google Scholar] [CrossRef]
- Von Wilmowsky, C.; Moest, T.; Nkenke, E.; Stelzle, F.; Schlegel, K.A. Implants in bone: Part II. Research on implant osseointegration: Material testing, mechanical testing, imaging and histoanalytical methods. Oral Maxillofac. Surg. 2014, 18, 355–372. [Google Scholar] [CrossRef]
- Alharbi, H.M.; Babay, N.; Alzoman, H.; Basudan, S.; Anil, S.; Jansen, J.A. Bone morphology changes around two types of bone-level implants installed in fresh extraction sockets—A histomorphometric study in Beagle dogs. Clin. Oral Implant. Res. 2015, 26, 1106–1112. [Google Scholar] [CrossRef]
- Leonard, G.; Coelho, P.; Polyzois, I.; Stassen, L.; Claffey, N. A study of the bone healing kinetics of plateau versus screw root design titanium dental implants. Clin. Oral Implant. Res. 2009, 20, 232–239. [Google Scholar] [CrossRef]
- Att, W.; Ogawa, T. Biological aging of implant surfaces and their restoration with ultraviolet light treatment: A novel understanding of osseointegration. Int. J. Oral Maxillofac. Implant. 2012, 27, 753–761. [Google Scholar]
- Stanford, C.M.; Schneider, G.B. Functional behaviour of bone around dental implants. Gerodontology 2004, 21, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ata-Ali, J.; Ata-Ali, F.; Peñarrocha-Oltra, D.; Galindo-Moreno, P. What is the impact of bisphosphonate therapy upon dental implant survival? A systematic review and meta-analysis. Clin. Oral Implant. Res. 2016, 27, 38–46. [Google Scholar] [CrossRef]
- Noro, A.; Kaneko, M.; Murata, I.; Yoshinari, M. Influence of surface topography and surface physicochemistry on wettability of zirconia (tetragonal zirconia polycrystal). J. Biomed. Mater. Res. B Appl. Biomater. 2013, 101, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Al Qahtani, M.S.; Wu, Y.; Spintzyk, S.; Krieg, P.; Killing, A.; Schweizer, E.; Stephana, I.; Scheidelera, L.; Geis-Gerstorfera, J.; Ruppa, F. UV-A and UV-C light induced hydrophilization of dental implants. Dent Mater. 2015, 31, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Tuna, T.; Wein, M.; Altmann, B.; Steinberg, T.; Fischer, J.; Att, W. Effect of ultraviolet photofunctionalisation on the cell attractiveness of zirconia implant materials. Eur. Cell. Mater. 2015, 29, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Yang, Y.; Liu, X.Q.; Liu, M.Y.; Zhang, X.F.; Wang, X.; Li, H.-P.; Tan, J.-G. Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia. PLoS ONE 2015, 10, 0140278. [Google Scholar] [CrossRef] [PubMed]
- Altmann, B.; Kohl, R.J.; Steinberg, T.; Tomakidi, P.; Bachle-Haas, M.; Wennerberg, A.; Att, W. Distinct cell functions of osteoblasts on UV-functionalized titanium- and zirconia-based implant materials are modulated by surface topography. Tissue Eng. Part C Methods. 2013, 19, 850–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Att, W.; Takeuchi, M.; Suzuki, T.; Kubo, K.; Anno, M.; Ogawa, T. Enhanced osteoblast function on ultraviolet light-treated zirconia. Biomaterials 2009, 30, 1273–1280. [Google Scholar] [CrossRef]
- Tuna, T.; Wein, M.; Swain, M.; Fischer, J.; Att, W. Influence of ultraviolet photofunctionalization on the surface characteristics of zirconia-based dental implant materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2015, 31, 14–24. [Google Scholar] [CrossRef]
- Ogawa, T. Ultraviolet photofunctionalization of titanium implants. Int. J. Oral Maxillofac. Implant. 2014, 29, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diener Electronic. Plasmatechnik; Diener Electronic Gmbh & Co. KG: Ebhausen, Germany, 2008; pp. 7–15. [Google Scholar]
- Canullo, L.; Cassinelli, C.; Götz, W.; Tarnow, D. Plasma of argon accelerates murine fibroblast adhesion in early stages of titanium disk colonization. Int. J. Oral Maxillofac. Implant. 2013, 28, 957–962. [Google Scholar] [CrossRef]
- Henningsen, A.; Smeets, R.; Hartjen, P.; Heinrich, O.; Heuberger, R.; Heiland, M.; Precht, C.; Cacaci, C. Photofunctionalization and non-thermal plasma activation of titanium surfaces. Clin. Oral Investig. 2018, 22, 1045–1054. [Google Scholar] [CrossRef]
- Henningsen, A.; Smeets, R.; Heuberger, R.; Jung, O.T.; Hanken, H.; Heiland, M.; Cacaci, C.; Precht, C. Changes in surface characteristics of titanium and zirconia after surface treatment with ultraviolet light or non-thermal plasma. Eur. J. Oral Sci. 2018, 126, 126–134. [Google Scholar] [CrossRef]
- Smeets, R.; Henningsen, A.; Heuberger, R.; Hanisch, O.; Schwarz, F.; Precht, C. Influence of UV Irradiation and Cold Atmospheric Pressure Plasma on Zirconia Surfaces: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2019, 34, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Genova, T.; Tallarico, M.; Gautier, G.; Mussano, F.; Botticelli, D. Plasma of argon affects the earliest biological response of different implant surfaces: An in vitro comparative study. J. Dent. Res. 2016, 95, 566–573. [Google Scholar] [CrossRef]
- Watanabe, H.; Saito, K.; Kokubun, K.; Sasaki, H.; Yoshinari, M. Change in surface properties of zirconia and initial attachment of osteoblast like cells with hydrophilic treatment. Dent. Mater. J. 2012, 31, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gittens, R.A.; Scheideler, L.; Rupp, F.; Hyzy, S.L.; Geis-Gerstorfer, J.; Schwartz, Z.; Boyan, B.D. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomater. 2014, 10, 2907–2918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, N.P.; Salvi, G.E.; Huynh-Ba, G.; Ivanovski, S.; Donos, N.; Bosshardt, D.D. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin. Oral Implant. Res. 2011, 22, 349–356. [Google Scholar] [CrossRef]
- Flanagan, D. Photofunctionalization of Dental Implants. J. Oral Implantol. 2016, 42, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Aerssens, J.; Boonen, S.; Lowet, G.; Dequeker, J. Interspecies differences in bone composition, density, and quality: Potential implications for in vivo bone research. Endocrinology 1998, 139, 663–670. [Google Scholar] [CrossRef]
- Kantarci, A.; Hasturk, H.; Van Dyke, T.E. Animal models for periodontal regeneration and peri-implant responses. Periodontology 2000 2015, 68, 66–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aita, H.; Hohri, N.; Takeuchi, M.; Suzuki, T.; Yamada, M.; Anpo, M.; Ogawa, T. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 2009, 30, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontology 2000 2017, 73, 22–40. [Google Scholar] [CrossRef]
- Chappuis, V.; Cavusoglu, Y.; Gruber, R.; Kuchler, U.; Buser, D.; Bosshardt, D.D. Osseointegration of zirconia in the presence of multinucleated giant cells. Clin. Implant. Dent. Relat. Res. 2016, 18, 686–698. [Google Scholar] [CrossRef]
- Brezavšček, M.; Fawzy, A.; Bächle, M.; Tuna, T.; Fischer, J.; Att, W. The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials. Materials 2016, 9, 958. [Google Scholar] [CrossRef] [Green Version]
- Valverde, G.B.; Coelho, P.G.; Janal, M.N.; Lorenzoni, F.C.; Carvalho, R.M.; Thompson, V.P.; Weltemann, K.D.; Silva, N.R. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment. J. Dent. 2013, 41, 51–59. [Google Scholar] [CrossRef]
- Shon, W.J.; Chung, S.H.; Kim, H.K.; Han, G.J.; Cho, B.H.; Park, Y.S. Peri-implant bone formation of non-thermal atmospheric pressure plasma-treated zirconia implants with different surface roughness in rabbit tibiae. Clin. Oral Implant. Res. 2014, 25, 573–579. [Google Scholar] [CrossRef]
- Hashim, D.; Cionca, N.; Courvoisier, D.S.; Mombelli, A. A systematic review of the clinical survival of zirconia implants. Clin. Oral Investig. 2016, 20, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Roehling, S.; Schlegel, K.A.; Woelfler, H.; Gahlert, M. Performance and outcome of zirconia dental implants in clinical studies: A meta-analysis. Clin. Oral Implant. Res. 2018, 16, 135–153. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, A.; Smeets, R.; Köppen, K.; Sehner, S.; Kornmann, F.; Gröbe, A.; Heiland, M.; Gerlach, T. Immediate loading of subcrestally placed dental implants in anterior and premolar sites. J. Craniomaxillofac. Surg. 2017, 45, 1898–1905. [Google Scholar] [CrossRef]
- Henningsen, A.; Smeets, R.; Wahidi, A.; Kluwe, L.; Kornmann, F.; Heiland, M.; Gerlach, T. The feasibility of immediately loading dental implants in edentulous jaws. J. Periodontal Implant. Sci. 2016, 46, 234–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeets, R.; Henningsen, A.; Jung, O.; Heiland, M.; Hammächer, C.; Stein, J.M. Definition, etiology, prevention and treatment of peri-implantitis—A review. Head Face Med. 2014, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Healing Period | Surface Treatment | Number (n) | BIC Mean (in %) | Min/Max (in %) |
---|---|---|---|---|
2 weeks | Control | 5 | 56.82 | 51.63/61.72 |
CAP | 4 | 49.09 | 21.85/60.58 | |
UV | 4 | 60.01 | 39.03/80.11 | |
4 weeks | Control | 4 | 36.51 | 26.52/47.97 |
CAP | 5 | 45.66 | 30.06/69.91 | |
UV | 4 | 35.10 | 23.25/49.62 | |
9 weeks | Control | 6 | 44.66 | 24.5/70.74 |
CAP | 5 | 43.30 | 29.28/51.22 | |
UV | 5 | 43.20 | 29.01/61.95 |
Healing Period | Surface Treatment | Number (n) | BAFO Mean (in %) | Min/Max (in %) |
---|---|---|---|---|
2 weeks | Control | 5 | 48.91 | 35.43/70.89 |
CAP | 4 | 37.16 | 32.02/42.04 | |
UV | 3 | 60.95 | 48.63/70.77 | |
4 weeks | Control | 4 | 47.79 | 32.91/59.45 |
CAP | 5 | 45.28 | 22.66/59.99 | |
UV | 4 | 46.65 | 43.0/50.66 | |
9 weeks | Control | 6 | 59.7 | 50.2/68.12 |
CAP | 5 | 54.65 | 40.44/64.43 | |
UV | 5 | 58.47 | 49.48/68.75 |
Test | 2 Weeks | 4 Weeks | 9 Weeks |
---|---|---|---|
UV/Control | 0.6890 | 0.6798 | 0.6537 |
CAP/Control | 0.8678 | 0.5031 | 0.8149 |
UV/CAP | 0.8470 | 0.8916 | 0.5268 |
Test | 2 Weeks | 4 Weeks | 9 Weeks |
---|---|---|---|
2 weeks/4 weeks | 0.595 | 0.1357 | 0.1546 |
4 weeks/9 weeks | 0.3118 | 0.4472 | 0.8829 |
2 weeks/9 weeks | 0.2838 | 0.4149 | 0.2143 |
Implant Number | Animal | Healing Period (weeks) | Surface Treatment | BIC | BAFO |
---|---|---|---|---|---|
5 | 1 | 2 | CAP | 1.26 | 4.19 |
9 | 1 | 2 | Control | 4.05 | 0 |
11 | 2 | 2 | CAP | 18.86 | 38.25 |
14 | 2 | 2 | UV | 1.04 | 10.36 |
18 | 2 | 2 | UV | 0 | 0.81 |
20 | 3 | 4 | CAP | 0 | 0 |
23 | 3 | 4 | Control | 0 | 0 |
27 | 3 | 4 | UV | 0 | 0.63 |
28 | 4 | 4 | UV | 3.05 | 12.5 |
29 | 4 | 4 | Control | 7.93 | 17.02 |
45 | 5 | 9 | UV | 0 | 0 |
54 | 6 | 9 | CAP | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krautwald, L.; Smeets, R.; Stolzer, C.; Rutkowski, R.; Guo, L.; Reitmeier, A.; Gosau, M.; Henningsen, A. Osseointegration of Zirconia Implants after UV-Light or Cold Atmospheric Plasma Surface Treatment In Vivo. Materials 2022, 15, 496. https://doi.org/10.3390/ma15020496
Krautwald L, Smeets R, Stolzer C, Rutkowski R, Guo L, Reitmeier A, Gosau M, Henningsen A. Osseointegration of Zirconia Implants after UV-Light or Cold Atmospheric Plasma Surface Treatment In Vivo. Materials. 2022; 15(2):496. https://doi.org/10.3390/ma15020496
Chicago/Turabian StyleKrautwald, Lisa, Ralf Smeets, Carolin Stolzer, Rico Rutkowski, Linna Guo, Aline Reitmeier, Martin Gosau, and Anders Henningsen. 2022. "Osseointegration of Zirconia Implants after UV-Light or Cold Atmospheric Plasma Surface Treatment In Vivo" Materials 15, no. 2: 496. https://doi.org/10.3390/ma15020496
APA StyleKrautwald, L., Smeets, R., Stolzer, C., Rutkowski, R., Guo, L., Reitmeier, A., Gosau, M., & Henningsen, A. (2022). Osseointegration of Zirconia Implants after UV-Light or Cold Atmospheric Plasma Surface Treatment In Vivo. Materials, 15(2), 496. https://doi.org/10.3390/ma15020496