Study on Characteristics of the Light-Initiated High Explosive-Based Pulse Laser Initiation
Abstract
:1. Introduction
2. Interaction between Laser and Explosive
2.1. Thermal Mechanism Process Analysis
2.2. Photochemical Mechanism Process Analysis
- The laser wavelength is strictly matched with the absorption wavelength of SASN, and then the energetic material can be photolyzed, due to resonance absorption to the laser;
- The laser energy of irradiation SASN is not too small.
3. Pulse Laser Initiation Platform
4. Properties of Silver Acetylene–Silver Nitrate of LIHE
5. Experimental Study on Laser Initiation
5.1. Initiation Threshold
5.2. Detonation Velocity Measurement of Laser Initiation
5.3. Spectral Analysis of Initiation Process
6. Conclusions
- With the laser ignition process based on thermal mechanism analyzed, the physical model and mathematical model are established. Upon the calculation of the heat conduction equation, established by boundary conditions, the relations between the critical energy of ignition and the initial parameter of energetic material, and the relations between the material surface and the time, are obtained. The rise in surface temperature of energetic material is directly proportional to the laser power, but the energy of the laser ignition is inversely proportional to the power. From the results, it is known that the increase in laser power positively affects the laser ignition process, based on the thermal mechanism. As the energy output of the laser remains unchanged, reducing the loss of laser during transmission is conducive to the improvement of ignition performance;
- The photochemical reaction process is analyzed, based on the optical absorption property of LIHE, and the photochemical initiation conditions are proposed;
- The detonator initiation platform is set up, and the laser energy distribution and ultraviolet laser attenuation characteristics are obtained, while the property of silver acetylene–silver nitrate is investigated, using a variety of detection methods;
- The SASN laser initiation is verified by lasers with different wavelengths of 193 nm, 266 nm, 355 nm, 532 nm, and 1064 nm, and SASN is detonated reliably with the low energy. Then, the initiation threshold and spectral characteristics of laser initiation with different parameters are obtained. The ultraviolet laser initiation process is mainly dominated by the photochemical effect, while the visible light and infrared initiation process is mainly dominated by the hot spot effect, which verifies the light absorption characteristic of SASN.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holinka, S.; Montoya, R. Let There Be LIHE; Sandia Lab News; Sandia National Laboratories: Albuquerque, NM, USA, 2007; Volume 4, p. 5.
- Benham, R.A.; Mathews, F.H. X-Ray Simulation with Light-Initiated Explosive. In The 45th Shock and Vibration Bulletin; Naval Research Laboratory: Washington, DC, USA, 1975; pp. 87–91. [Google Scholar]
- Chavez, M.A. Improved Microstructure of Silver Acetylide-Silver Nitrate Explosive and Subsequent Effects to Detonation Performance; MATE592 Graduate Seminar; Sandia National Laboratories: Albuquerque, NM, USA, 2016.
- Hoese, F.O.; Langner, C.G.; Baker, W.E. Simultaneous Initiation over Large Areas of a Spray-deposited Explosive. Exp. Mech. 1968, 8, 392–397. [Google Scholar] [CrossRef]
- Office of the Deputy Assistant Secretary of Defense for Nuclear Matters (ODASD(NM)). Nuclear Matters Handbook; Office of the Deputy Assistant Secretary of Defense for Nuclear Matters (ODASD (NM)): Washington, DC, USA, 2020. Available online: www.acq.osd.mil/ncbdp/nm (accessed on 8 July 2021).
- Covert, T.T. Staubli TX-90XL Robot Qualification at the Light Initiated High Explosives Facility; Sandia National Laboratories: Albuquerque, NM, USA, 2010.
- Covert, T.T.; Chavez, M.A. Synthesis Microstructure and Explosive Properties of Spray-Deposited Silver Acetylide-Silver Nitrate Composite Light Initiated High Explosives; Sandia National Laboratories: Albuquerque, NM, USA, 2013.
- Covert, T.T. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-ray Fluorescence; Sandia National Laboratories: Albuquerque, NM, USA, 2014.
- Covert, T.T. VISAR Validation Test Series at the Light Initiated High Explosive (LIHE) Facility; Sandia National Laboratories: Albuquerque, NM, USA, 2007.
- Hu, M.Z. Experimental Investigation on Conical Shells under Short Impulsive loading. J. Astronaut. 1986, 3, 54–60. [Google Scholar]
- Benham, R.A. An Initiation and Gas Expansion Model for the Light-Initiated Explosive Silver Acetylide-Silver Nitrate; Sandia National Laboratories: Albuquerque, NM, USA, 1979.
- Liu, J.; Xiong, Y.; Jiang, X.H. Characteristic Wavelength Analysis for Laser-induced Initiation in Energetic Material. Laser Technol. 2013, 37, 816–819. [Google Scholar]
- Brish, A.A.; Galeev, I.A.; Zaitsev, B.N.; Sbitnev, E.A.; Tatarintsev, L.V. Laser-excited Detonation of Condensed Explosives. Combust. Explos. Shock Waves 1966, 2, 81–82. [Google Scholar] [CrossRef]
- Ewick, D.W. Improved 2-D finite difference model for laser diode ignited components. In Proceedings of the 18th International Pyrotechnics Seminar, Breckenridge, CO, USA, 25–29 July 1994; pp. 255–266. [Google Scholar]
- Ostmark, H.; Roman, N. Laser Ignition of Pyrotechnic Mixtures: Ignition Mechanisms. J. Appl. phys. 1993, 73, 1993. [Google Scholar] [CrossRef]
- Sun, C.W. The Mechanism and Experimental of Laser Exploration. Explos. Shock. Wave 1978, 1, 53–65. [Google Scholar]
- Feng, C.G.; Xiang, S.B.; Wang, L.Q.; Qian, X.M.; Hua, G. Effect of Laser Intensity on Ignition of Energetic Materials. Appl. Laser 1999, 8, 153–155. [Google Scholar]
- Liau, Y.C.; Kim, E.S.; Yang, V. A Comprehensive Analysis of Laser-induced Ignition of RDX Monopropellant. Combust. Flame 2001, 126, 1680–1698. [Google Scholar] [CrossRef]
- Ali, A.N.; Son, S.F.; Asay, B.W.; Decroix, M.E.; Brewster, M.Q. High-irradiance Laser Ignition of Explosives. Combust. Sci. Technol. 2003, 175, 1551–1571. [Google Scholar] [CrossRef]
- Ostmark, H.M.; Carlson, K.; Ekvall, K. Laser Ignition of Explosives: Effects of Laser Wavelength on the Threshold Ignition Energy. J. Energetic Mater. 1994, 12, 63–83. [Google Scholar] [CrossRef]
- Aleksandrov, E.I.; Tsipilev, V.P. Effect of the Pulse Length on the Sensitivity of Lead Azide to Laser Radiation. Combust. Explos. Shock Waves 1984, 20, 690–694. [Google Scholar] [CrossRef]
- Aduev, B.P.; Nurmukhametov, D.R.; Furega, R.V. Initiation of the Explosive Decomposition of Pentaerythritol Tetranitrate with Ultra-dispersed Particle Additives by Laser Pulses. Solid Fuel Chem. 2012, 46, 371–374. [Google Scholar] [CrossRef]
- Tarzhanov, V.I.; Sdobnov, V.I.; Zinchenko, A.D.; Pogrebov, A.I.; Tokarev, B.B. Laser Initiation of Mixtures of PETN and Aluminum by a Deposit. Combust. Explos. Shock Waves 2017, 53, 724–729. [Google Scholar] [CrossRef]
- Aluker, E.D.; Krechetov, A.G.; Mitrofanov, A.Y.; Nurmukhametov, D.R.; Kuklja, M.M. Laser Initiation of Energetic Materials: Selective Photo Initiation Regime in Pentaerythritol Tetranitrate. J. Phys. Chem. C 2011, 115, 6893–6901. [Google Scholar] [CrossRef]
- Aduev, B.P.; Nurmukhametov, D.R.; Zvekov, A.A.; Nikitin, A.P.; Kalenskii, A.V. Laser Initiation of PETN-based Composites with Additives of Ultrafine Aluminum Particles. Combust. Explos. Shock Waves 2016, 52, 713–718. [Google Scholar] [CrossRef]
- Aduev, B.P.; Nurmukhametov, D.R.; Nelyubina, N.V.; Kovalev, R.Y.; Nikitin, A.P.; Zaostrovskii, A.A.; Ismagilov, Z.R. Laser Initiation of Compositions Based on PETN With Submicron Coal Particles. Combust. Explos. Shock Waves 2016, 52, 593–599. [Google Scholar] [CrossRef]
- Khokhlov, N.P.; Ponkin, N.A.; Lukyanenko, I.A.; Rudnev, A.V.; Lukovkin, O.M.; Sheikov, Y.V.; Batyanov, S.M. Experimental Study of Laser Initiation of a Light-sensitive Explosive Charge over a ≈ 1000 mm2 Surface. Combust. Explos. Shock Waves 2021, 57, 364–371. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, T.W.; Wang, X.J.; Zhou, Z.N.; Li, Z.M.; Zhang, T.L.; Zhang, J.G. Review on Laser Sensitive Energetic Complex Primary Explosives. Chin. J. Energetic Mater. 2022, 30, 1–12. [Google Scholar]
- Wurzenberger, M.H.; Gruhne, M.S.; Lommel, M.; Stierstorfer, J. 1-Amino-5-methyltetrazole in Energetic 3 d Transition Metal Complexes-Ligand Design for Future Primary Explosives. Propellants Explos. Pyrotech. 2021, 46, 207–213. [Google Scholar] [CrossRef]
- Myers, T.W.; Brown, K.E.; Chavez, D.E.; Schaarff, R.J.; Veauthier, J.M. Laser initiation of Fe(II) Complexes of 4-Nitro-Pyrazolyl Substituted Tetrazine Ligands. Inorg. Chem. 2017, 56, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.D. Theoretical Studies on the Photochemical Mechanism of Laser Initiation of Nitrogen-Rich Energetic Complexes; Beijing Institute of Technology: Beijing, China, 2020. [Google Scholar]
Laser | Wavelength (nm) | Maximum of Single Pulse (mJ) | Pulse Width (ns) |
---|---|---|---|
ArF excimer laser | 193 | 120 | 20 |
Q-smart450 Laser | 266 | 50 | 6.3 |
355 | 130 | ||
532 | 200 | ||
1064 | 400 |
Input (mJ) | After Filter (mJ) | Output (mJ) | After Filter (mJ) |
---|---|---|---|
118 | 3.9 | 114 | 3.9 |
112 | 3.8 | 114 | 3.6 |
118 | 4.1 | 118 | 3.8 |
118 | 3.9 | 114 | 3.7 |
Number | Plate Quality (g) | Total Quality (g) | SASN Quality (mg) | Area Density (mg/cm2) |
---|---|---|---|---|
1 | 19.1766 | 19.1830 | 6.4 | 32.59 |
2 | 18.3322 | 18.3427 | 10.5 | 53.48 |
3 | 18.4339 | 18.4384 | 4.5 | 20.92 |
4 | 18.0878 | 18.0931 | 5.3 | 26.99 |
5 | 17.8110 | 17.8229 | 11.9 | 60.61 |
6 | 18.9769 | 18.9807 | 3.8 | 19.35 |
7 | 18.5498 | 18.5537 | 3.9 | 19.86 |
8 | 17.9772 | 17.9820 | 4.8 | 24.45 |
9 | 18.2176 | 18.2306 | 27 | 42.45 |
10 | 19.1538 | 19.1660 | 12.2 | 19.18 |
11 | 18.9480 | 18.9594 | 11.4 | 17.92 |
12 | 19.5887 | 19.6018 | 13.1 | 20.60 |
13 | 18.2005 | 18.2149 | 14.4 | 22.64 |
14 | 18.8201 | 18.8349 | 14.8 | 23.27 |
15 | 18.8613 | 18.8720 | 10.7 | 16.82 |
16 | 18.6746 | 18.6932 | 18.6 | 29.25 |
Laser | Energy (mJ) | Light Spot (mm2) | Energy Density (mJ/mm2) | Power Density (kW/mm2) | Detonation |
---|---|---|---|---|---|
ArF, 20 Hz, 193 nm | 3.1 | 5.275 | 0.59 | 29.5 | No |
3.8 | 5.275 | 0.72 | 36 | No | |
4 | 5.275 | 0.75 | 37.5 | No | |
4 | 5.275 | 0.76 | 38 | No | |
3.8 | 0.75 | 5.07 | 253.5 | Yes | |
3.8 | 0.75 | 5.07 | 253.5 | Yes | |
3.9 | 0.75 | 5.2 | 260 | Yes | |
3.9 | 0.75 | 5.2 | 260 | Yes | |
4 | 0.75 | 5.3 | 265 | Yes | |
4.4 | 0.75 | 5.87 | 293.5 | Yes | |
13 | 0.427 | 30.44 | 5073.3 | Yes | |
12 | 0.427 | 7.86 | 1310.0 | Yes | |
Q-smart450, 20 Hz, 266 nm | 9.5 | 2.512 | 3.78 | 600.3 | No |
13.1 | 5.21 | 827.8 | No | ||
15.4 | 6.13 | 973.1 | No | ||
17.0 | 6.77 | 1074.2 | Yes | ||
17.5 | 6.97 | 1105.8 | Yes | ||
18.5 | 7.36 | 1169.0 | Yes | ||
21.1 | 8.40 | 1333.3 | Yes | ||
Q-smart450, 20 Hz, 355 nm | 6.8 | 0.427 | 15.93 | 2653.9 | No |
10 | 23.42 | 3901.8 | No | ||
10.6 | 24.82 | 4135.0 | No | ||
11.5 | 26.93 | 4486.5 | No | ||
12 | 28.10 | 4681.5 | No | ||
12.5 | 29.27 | 4876.4 | Yes | ||
13 | 30.44 | 5071.3 | Yes | ||
Q-smart450, 20 Hz, 532 nm | 16.8 | 3.120 | 5.38 | 854.7 | No |
18.5 | 5.93 | 941.2 | No | ||
21.1 | 6.76 | 1073.5 | No | ||
22.5 | 7.21 | 1144.7 | Yes | ||
23.9 | 7.66 | 1215.9 | Yes | ||
24.8 | 7.95 | 1261.7 | Yes | ||
25.9 | 8.30 | 1317.7 | Yes | ||
Q-smart450, 20 Hz, 1064 nm | 22.6 | 3.524 | 6.41 | 1018.0 | No |
27.6 | 7.83 | 1243.2 | No | ||
32.4 | 9.19 | 1459.4 | No | ||
35.2 | 9.99 | 1585.5 | No | ||
37.4 | 10.61 | 1684.6 | Yes | ||
39.5 | 11.21 | 1779.2 | Yes | ||
42.6 | 12.09 | 1918.8 | Yes |
Probe 1-Probe2 (μs) | Probe 2-Probe 3 (μs) | Probe 3-Probe 4 (μs) | Probe 4-Probe 5 (μs) | Average Velocity (km/s) |
---|---|---|---|---|
7.1 | 6.8 | 7.1 | 1.429 | |
7.4 | 6.9 | 7.4 | 1.382 | |
8.7 | 7.4 | 7.4 | 6.7 | 1.325 |
6.4 | 7.1 | 6.9 | 7.0 | 1.460 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Li, J.; Zhang, Y.; Li, H.; Wang, S. Study on Characteristics of the Light-Initiated High Explosive-Based Pulse Laser Initiation. Materials 2022, 15, 4100. https://doi.org/10.3390/ma15124100
Wang D, Li J, Zhang Y, Li H, Wang S. Study on Characteristics of the Light-Initiated High Explosive-Based Pulse Laser Initiation. Materials. 2022; 15(12):4100. https://doi.org/10.3390/ma15124100
Chicago/Turabian StyleWang, Dengwang, Jinglun Li, Yunfeng Zhang, Hao Li, and Sheng Wang. 2022. "Study on Characteristics of the Light-Initiated High Explosive-Based Pulse Laser Initiation" Materials 15, no. 12: 4100. https://doi.org/10.3390/ma15124100
APA StyleWang, D., Li, J., Zhang, Y., Li, H., & Wang, S. (2022). Study on Characteristics of the Light-Initiated High Explosive-Based Pulse Laser Initiation. Materials, 15(12), 4100. https://doi.org/10.3390/ma15124100