Electrochemical Study of Semiconductor Properties for Bismuth Silicate-Based Photocatalysts Obtained via Hydro-/Solvothermal Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of BSO Materials
2.3. Characterization of BSO Materials
2.4. Zeta-Potential Measurements
2.5. Electrochemical Studies
2.5.1. Electrochemical Measurements in Liquids
2.5.2. Solutions for Electrochemical Measurements
2.5.3. Preparation of Electrodes with BSO Material
2.5.4. Electroactive Surface Area Measurements
2.5.5. Measurements of Charge Carrier Mobility
3. Results and Discussion
3.1. Characterization of BSO Samples
3.2. Correlation between Electrochemically Determined Semiconducting Properties and Photocatalytic Activity of BSO Materials
3.3. SLI State and Processes at SLI for BSO Materials in Two Media
3.3.1. Electrochemical Impedance Spectroscopy Studies
3.3.2. Results of Zeta-Potential Measurement
3.3.3. Discussion and Findings
3.4. Difference in EDL for Three BSO Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations and Designations
BSO | bithmuth silicon oxides (bismuth silicates) |
RhB | Rhodamine B |
SLI | semiconductor/liquid interface |
EDL | electric double layer |
SC | space charge layer |
CB | conduction band |
VB | valance band |
EF | Fermi level |
Eredox | redox potential of the electrolyte |
Efb | flat band potential |
EIS | electrochemical impedance spectroscopy |
M–S | Mott–Schottky |
CSRs | coherent scattering regions |
SEM | scanning electron microscopy |
BSE | back-scattered electrons |
OCP, EOC | open circuit potential |
SEA | electroactive surface area |
TEOS | tetraethoxysilane |
XRD | X-ray diffraction |
Eg | band gap energy |
SBET | specific surface area according to BET |
NHE | Normal Hydrogen Electrode |
ND | donor density |
μ | mobility of charge carriers |
LEDs | light-emitting diodes |
Cdl | EDL capacitance |
CH | Helmholtz layer capacitance |
CSC | space charge layer capacitance |
CPE-T, Rs, and other EIS simulation parameters. | are described in Section S1 (Supplementary Material). |
IEP | isoelectric point |
References
- Friedmann, D.; Hakki, A.; Kim, H.; Choic, W.; Bahnemannd, D. Heterogeneous photocatalytic organic synthesis: State-of-the-art and future perspectives. Curr. Green Chem. 2016, 18, 5391–5411. [Google Scholar] [CrossRef] [Green Version]
- Kobielusz, M.; Mikrut, P.; Macyk, W. Photocatalytic synthesis of chemicals. Adv. Inorg. Chem. 2018, 72, 93–144. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, B.; Cheng, X.; Guo, Z.; Zhuang, T.; Lv, Z. A CdS@NiS reinforced concrete structure derived from nickel foam for efficient visible-light H2 production. Chem. Eng. J. 2020, 393, 124774. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Wu, T.; Gao, P.; Zhu, G.; Fan, J. Novel approach for preparation of three-dimensional BiOBr/BiOI hybrid nanocomposites and their removal performance of antibiotics in water. Colloid. Surf. A 2020, 605, 125344. [Google Scholar] [CrossRef]
- Yu, W.; Ji, N.; Tian, N.; Bai, L.; Ou, H.; Huang, H. BiOI/Bi2O2[BO2(OH)] heterojunction with boosted photocatalytic degradation performance for diverse pollutants under visible light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125–184. [Google Scholar] [CrossRef]
- Batool, S.S.; Hassan, S.; Imran, Z.; Rasool, K.; Ahmad, M.; Rafiq, M.A. Comparison of different phases of bismuth silicate nanofibers for photodegradation of organic dyes. Int. J. Environ. Sci. Technol. 2016, 13, 1497–1504. [Google Scholar] [CrossRef]
- Shabalina, A.V.; Fakhrutdinova, E.D.; Golubovskaya, A.G.; Kuzmin, S.M.; Koscheev, S.V.; Kulinich, S.A.; Svetlichnyi, V.A.; Vodyankina, O.V. Laser-assisted preparation of highly-efficient photocatalytic nanomaterial based on bismuth silicate. Appl. Surf. Sci. 2022, 575, 151722. [Google Scholar] [CrossRef]
- Zaitsev, A.V.; Kirichenko, E.A.; Kaminsky, O.I.; Makarevich, K.S. Investigation into the efficiency of photocatalytic oxidation of aqueous solutions of organic toxins in a unit with an automatically cleaning bismuthsilicate photocatalyst. J. Water Process Eng. 2020, 37, 101468. [Google Scholar] [CrossRef]
- Hwang, S.W.; Seo, D.H.; Kim, J.U.; Lee, D.K.; Choi, K.S.; Jeon, C.; Yu, H.K.; Cho, I.S. Bismuth vanadate photoanode synthesized by electron-beam evaporation of a single precursor source for enhanced solar water-splitting. Appl. Surf. Sci. 2020, 528, 146906. [Google Scholar] [CrossRef]
- Gu, W.; Teng, F.; Liu, Z.; Liu, Z.; Yang, J.; Teng, Y. Synthesis and photocatalytic properties of Bi2SiO5 and Bi12SiO20. J. Photochem. Photobiol. A Chem. 2018, 353, 395–400. [Google Scholar] [CrossRef]
- Al-Keisy, A.; Ren, L.; Zheng, T.; Xu, X.; Higgins, M.; Hao, W.; Du, Y. Enhancement of charge separation in ferroelectric heterogeneous photocatalyst Bi4(SiO4)3/Bi2SiO5 nanostructures. Dalton Trans. 2017, 46, 15582–15588. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Xiong, X.; Liu, X.; Shi, Y.; Jiang, Q.; Hu, J. Synthesis and characterization of single-crystalline Bi2O2SiO3 nanosheets with exposed {001} facets. Catal. Sci. Technol. 2017, 7, 3791–3801. [Google Scholar] [CrossRef]
- Dou, L.; Jin, X.; Chen, J.; Zhong, J.; Li, J.; Zeng, Y.; Duan, R. One-pot solvothermal fabrication of S-scheme OVs-Bi2O3/Bi2SiO5 microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants. Appl. Surf. Sci. 2020, 527, 146775. [Google Scholar] [CrossRef]
- Chai, B.; Yan, J.; Fan, G.; Song, G.; Wang, C. In-situ construction of Bi2SiO5/BiOBr heterojunction with significantly improved photocatalytic activity under visible light. J. Alloys Compd. 2019, 802, 301–309. [Google Scholar] [CrossRef]
- Belik, Y.; Kharlamova, T.; Vodyankin, A.; Svetlichnyi, V.; Vodyankina, O. Mechanical activation for soft synthesis of bismuth silicates. Ceram. Int. 2020, 46, 10797–10806. [Google Scholar] [CrossRef]
- Svetlichnyi, V.; Belik, Y.; Vodyankin, A.; Fakhrutdinova, E.; Vodyankina, O. Laser fragmentation of photocatalyst particles based on bismuth silicates. Proc. SPIE 2019, 11322, 113221D. [Google Scholar] [CrossRef]
- Belik, Y.A.; Vodyankin, A.A.; Fakhrutdinova, E.D.; Svetlichnyi, V.A.; Vodyankina, O.V. Photoactive bismuth silicate catalysts: Role of preparation method. J. Photochem. Photobiol. A Chem. 2022, 425, 113670. [Google Scholar] [CrossRef]
- Pleskov, Y.V. Electric Double Layer on the Semiconductor-Electrolyte Interface; Springer Science + Business Media: New York, NY, USA, 1980; pp. 57–93. [Google Scholar]
- Bott, A.W. Electrochemistry of semiconductors. Curr. Sep. 1998, 17, 87–91. [Google Scholar]
- Zhang, Z.; Yates, J.T., Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef]
- Memming, R. Semiconductor Electrochemistry; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015. [Google Scholar]
- Sato, N. Electrochemistry at Metal and Semiconductor Electrodes; Elsevier Sience: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy Theory, Experiment, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Hankin, A.; Bedoya-Lora, F.E.; Alexander, J.C.; Regoutz, A.; Kelsall, G.H. Flat band potential determination: Avoiding the pitfalls. J. Mater. Chem. A 2019, 7, 26162–26176. [Google Scholar] [CrossRef] [Green Version]
- La Mantia, F.; Habazaki, H.; Santamaria, M.; Di Quarto, F. A critical assessment of the Mott–Schottky analysis for the characterisation of passive film-electrolyte junctions. Russ. J. Electrochem. 2010, 46, 1306–1322. [Google Scholar] [CrossRef] [Green Version]
- Beranek, R. (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv. Phys. Chem. 2011, 2011, 786759. [Google Scholar] [CrossRef] [Green Version]
- Kogikoski, S., Jr.; Sousa, C.P.; Liberato, M.S.; Andrade-Filho, T.; Prieto, T.; Ferreira, F.F.; Rocha, A.R.; Guha, S.; Alves, W.A. Multifunctional biosensors based on peptide-polyelectrolyte conjugates. Phys. Chem. Chem. Phys. 2016, 18, 3223–3233. [Google Scholar] [CrossRef] [PubMed]
- Clymer, D.; Matin, M. Application of Mott-Gurney law to model the current voltage relationship of PPV/CN-PPV with a thin-metal anode buffer. Proc. SPIE 2005, 5907, 59070S. [Google Scholar] [CrossRef]
- Wang, Z.B.; Helander, M.G.; Greiner, M.T.; Qiu, J.; Lu, Z.H. Carrier mobility of organic semiconductors based on current-voltage characteristics. J. Appl. Phys. 2010, 107, 034506. [Google Scholar] [CrossRef]
- Ling, Y.; Dai, Y. Direct Z-scheme hierarchical WO3/BiOBr with enhanced photocatalytic degradation performance under visible light. Appl. Surf. Sci. 2020, 509, 145201. [Google Scholar] [CrossRef]
- Austin, J.M.; Harrison, I.R.; Quickenden, T. Electrochemical and photoelectrochemical properties of rhodamine B. J. Phys. Chem. 1986, 90, 1839–1843. [Google Scholar] [CrossRef]
- Dai, Q.; Jiang, L.; Luo, X. Electrochemical oxidation of rhodamine B: Optimization and degradation mechanism. Int. J. Electrochem. Sci. 2017, 12, 4265–4276. [Google Scholar] [CrossRef]
- Comninellis, C.; Pulgarin, C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 1993, 23, 108–112. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 2011, 655, 9–16. [Google Scholar] [CrossRef]
- Coutanceau, C.; Baranton, S.; Bitty Kouame, R.S. Selective electrooxidation of glycerol into value-added chemicals: A short overview. Front. Chem. 2019, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Siraj, M.; Tahir, B.; Umer, M.; Alias, H.; Othman, N. Au-NPs embedded Z–scheme WO3/TiO2 nanocomposite for plasmon-assisted photocatalytic glycerol-water reforming towards enhanced H2 evolution. Appl. Surf. Sci. 2020, 503, 144344. [Google Scholar] [CrossRef]
- Sadanandam, G.; Zhang, L.; Scurrell, M.S. Enhanced photocatalytic hydrogen formation over Fe-loaded TiO2 and g-C3N4 composites from mixed glycerol and water by solar irradiation. J. Renew. Sustain. Energy 2018, 10, 034703. [Google Scholar] [CrossRef]
- Gelderman, K.; Lee, L.; Donne, S.W. Flat-band potential of a semiconductor: Using the Mott–Schottky equation. J. Chem. Educ. 2007, 84, 685–688. [Google Scholar] [CrossRef]
- Cardon, F.; Gomes, W.P. On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. J. Phys. D Appl. Phys. 1978, 11, L63–L67. [Google Scholar] [CrossRef]
- Finlayson, M.F.; Wheeler, B.L.; Kakuta, N.; Park, K.H.; Bard, A.J.; Campion, A.; Fox, M.A.; Webber, S.E.; White, J.M. Determination of flat-band position of CdS crystals, films, and powders by photocurrent and impedance techniques, photoredox reaction mediated by intragap states. J. Phys. Chem. 1985, 89, 5676–5681. [Google Scholar] [CrossRef]
- Ge, H.; Tian, H.; Zhou, Y.; Wu, S.; Liu, D.; Fu, X.; Song, X.M.; Shi, X.; Wang, X.; Li, N. Influence of surface states on the evaluation of the flat band potential of TiO2. ACS Appl. Mater. Interfaces 2014, 6, 2401–2406. [Google Scholar] [CrossRef]
- Sharon, M.; Sinha, A. Effect of electrolytes on flat-band potential of n-BaTiO3 semiconductor. Electrochim. Acta 1983, 28, 1063–1066. [Google Scholar] [CrossRef]
- Huang, L.; Yang, L.; Li, Y.; Wang, C.; Xu, Y.; Huang, L.; Song, Y. p-n BiOI/Bi3O4Cl hybrid junction with enhanced photocatalytic performance in removing methyl orange, bisphenol A, tetracycline and Escherichia coli. Appl. Surf. Sci. 2020, 527, 146748. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, H.; Guo, R.; Li, B.; Zhang, X.; Cheng, X.; Xie, M.; Cheng, Q. Construction of CuS/TiO2 nano-tube arrays photoelectrode and its enhanced visible light photoelectrocatalytic decomposition and mechanism of penicillin G. Electrochim. Acta 2018, 283, 1154–1162. [Google Scholar] [CrossRef]
- Haider, Z.; Zheng, J.Y.; Kang, Y.S. Surfactant free fabrication and improved charge carrier separation induced enhanced photocatalytic activity of {001} facet exposed unique octagonal BiOCl nanosheets. Phys. Chem. Chem. Phys. 2016, 18, 19595–19604. [Google Scholar] [CrossRef] [PubMed]
- Bera, B.; Chakraborty, A.; Kar, T.; Leuaa, P.; Neergat, M. Density of states, carrier concentration, and flat band potential derived from electrochemical impedance measurements of N-doped carbon and their influence on electrocatalysis of oxygen reduction reaction. J. Phys. Chem. C 2017, 121, 20850–20856. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, F.; Lin, H.; Xie, Y.; Tong, N.; Lin, J.J.; Zhang, X.; Zhang, Z.; Wang, X. Surface oxygen vacancy and defect engineering of WO3 for improved visible light photocatalytic performance. Catal. Sci. Technol. 2018, 8, 4399–4406. [Google Scholar] [CrossRef]
- Cuesta, A.; Kleinert, M.; Kolb, D. The adsorption of sulfate and phosphate on Au(111) and Au(100) electrodes: An in situ STM study. Phys. Chem. Chem. Phys. 2000, 2, 5684–5690. [Google Scholar] [CrossRef]
- Kazarinov, V.; Andreev, V.; Mayorov, A. Investigation of the adsorption properties of the TiO2 electrode by the radioactive tracer method. J. Electroanal. Chem. 1981, 130, 277–285. [Google Scholar] [CrossRef]
- Ehrenburg, M.; Rybin, A.; Danilov, A. Effect of sulfate ion adsorption on the rate of copper electrocrystallization on Ag(111) face. Russ. J. Electrochem. 2010, 46, 714–720. [Google Scholar] [CrossRef]
- Dadwal, U.; Ali, D.; Singh, R. Silicon-silver dendritic nanostructures for the enhanced photoelectrochemical splitting of natural water. Int. J. Hydrogen Energy 2018, 43, 22815–22826. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, Y.C.; Liang, Y.Y.; Zhao, W.W.; Xu, J.J.; Chen, H.Y. Semiconducting CuO nanotubes: Synthesis, characterization, and bifunctional photocathodic enzymatic bioanalysis. Anal. Chem. 2018, 90, 5439–5444. [Google Scholar] [CrossRef]
- Bard, A.; Stratmann, M.; Gileadi, E.; Urbakh, M.; Calvo, E. Encyclopedia of Electrochemistry; Wiley-VCH: New York, NY, USA, 2007. [Google Scholar]
- Randles, J.E.B. Kinetics of rapid electrode reactions. Faraday Discuss. 1947, 1, 11–19. [Google Scholar] [CrossRef]
- Khan, S.; Bazaz, S.A.; Aslam, D.M.; Chan, H.Y. Electrochemical interface characterization of MEMS based brain implantable all-diamond microelectrodes probe, Saudi Int. Electron. In Proceedings of the Communications and Photonics Conference, Riyadh, Saudi Arabia, 27–30 April 2013; pp. 1–4. [Google Scholar]
- Xiao, P.; Garcia, B.B.; Guo, G.; Liu, D.; Cao, G. TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochem. Commun. 2003, 9, 2441–2447. [Google Scholar] [CrossRef]
- Jovic, V.D.; Jovic, B.M. EIS and differential capacitance measurements onto single crystal faces in different solutions Part I: Ag(111) in 0.01 M NaCl. J. Electroanal. Chem. 2003, 541, 1–11. [Google Scholar] [CrossRef]
- Brug, G.J.; Van Den Eeden, A.L.G.; Sluysters-Renbach, M.; Sluysters, L.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Huang, J. Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochim. Acta 2018, 281, 170–188. [Google Scholar] [CrossRef]
- Shimizu, K.; Nystro, J.; Geladi, P.; Lindholm-Sethsona, B.; Boilya, J.-F. Electrolyte ion adsorption and charge blocking effect at the hematite/aqueous solution interface: An electrochemical impedance study using multivariate data analysis. Phys. Chem. Chem. Phys. 2015, 17, 11560–11568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horanyi, G. Radiotracer study of the adsorption of sulfate ions at a Bi2O3 powder/electrolyte solution interface. J. Solid State Electrochem. 2003, 7, 309–312. [Google Scholar] [CrossRef]
- Feng, S.; Shixiang, Y.; Miura, H.; Nakatani, N.; Hada, M.; Shishido, T. Experimental and theoretical investigation of the role of bismuth in promoting the selective oxidation of glycerol over supported Pt-Bi catalyst under mild conditions. ACS Catal. 2020, 10, 6071–6083. [Google Scholar] [CrossRef]
- Garcia, A.C.; Birdja, Y.Y.; Tremiliosi-Filho, G.; Koper, M.T.M. Glycerol electro-oxidation on bismuth-modified platinum single crystals. J. Catal. 2017, 346, 117–124. [Google Scholar] [CrossRef]
- Rajeshwar, K. Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry; Wiley-VCH Verlag GmbH & Co.: Houston, TX, USA, 2007. [Google Scholar]
Sample | Phase Composition (Content, %) a | Structural Features b, nm | BET Surface Area a, m2/g | Electroactive Surface Area c, cm2 | Ega, eV |
---|---|---|---|---|---|
BSO/TEOS | Bi2SiO5 (79) Bi12SiO20 (16) α-Bi2O3 (3) β-Bi2O3 (2) | 150 | 12 ± 2 | (3.2 ± 0.1) × 10−4 | 3.24 2.81 – 2.10 |
BSO/OH | Bi2SiO5 (85) Bi12SiO20 (15) | 227 | 2.0 ± 0.4 | (3.24 ± 0.08) × 10−4 | 3.41 3.02 |
BSO/NaSi | Bi2SiO5 (96) Bi12SiO20 (4) | 233 | 0.40 ± 0.08 | (13.0 ± 0.9) × 10−4 | 3.27 2.88 |
Sample | Efba, V vs. NHE | NDa, m−3 | μ, cm2/V·s |
---|---|---|---|
BSO/TEOS | –0.076 ± 0.008 | 1022 | 45 |
BSO/OH | +0.024 ± 0.009 | 1023 | 43.9 |
BSO/NaSi | +0.004 ± 0.001 | 1023 | 30.2 |
Sample | Photocatalytic Conversion a, % | ||
---|---|---|---|
Rhodamine B | Phenol | ||
Xe b | LEDs c | LEDs c | |
BSO/TEOS | 88 | 100 | 28 |
BSO/OH | 75 | 100 | 27 |
BSO/NaSi | 52 | 66 | 7 |
Liquid | Efb (Mott–Shottky), V, vs. NHE | ||
---|---|---|---|
BSO/TEOS | BSO/OH | BSO/NaSi | |
Glycerol and Na2SO4 in H2O | −0.409 ± 0.006 | −0.225 ± 0.004 | −0.242 ± 0.001 |
Liquid | EOC, V, vs. Ag/AgCl | ||
---|---|---|---|
BSO/TEOS | BSO/OH | BSO/NaSi | |
Na2SO4 in H2O | +0.17 ± 0.02 | +0.170 ± 0.005 | +0.16 ± 0.02 |
Glycerol and Na2SO4 in H2O | +0.170 ± 0.005 | +0.112 ± 0.002 | +0.24 ± 0.03 |
Sample | BSO/TEOS | BSO/OH | BSO/NaSi | ||||
---|---|---|---|---|---|---|---|
Liquid | Na2SO4 | Na2SO4 Glycerol | Na2SO4 | Na2SO4 Glycerol | Na2SO4 | Na2SO4 Glycerol | |
Parameters | Rs, Ω | 130 | 20 | 50 | 50 | 30 | 30 |
CPE-T, Ω−1sα | 4 × 10−8 | 5 × 10−8 | 9 × 10−8 | 4 × 10−8 | 2 × 10−8 | 2 × 10−7 | |
CPE-P (α) | 0.85 | 0.84 | 0.86 | 0.85 | 0.90 | 0.81 | |
Rct, Ω | 40 | 30 | 20 | 30 | 40 | 20 | |
Cdl, F | 5 × 10−5 | 9 × 10−6 | 4 × 10−5 | 2 × 10−5 | 4 × 10−6 | 5 × 10−5 | |
Wo-R, Ω | 8 × 105 | 5 × 105 | 2 × 106 | 8 × 105 | 1×106 | 1 × 106 | |
Wo-T, s | 9 × 10−3 | 2 × 10−3 | 5 × 10−2 | 2 × 10−2 | 4×10−3 | 4 × 10−3 | |
Wo-P | 0.29 | 0.28 | 0.18 | 0.35 | 0.28 | 0.69 | |
χ2 | 3.6 × 10−4 | 1.7 × 10−4 | 2.3 × 10−4 | 3.0 × 10−4 | 4.5×10−4 | 9.6 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabalina, A.V.; Gotovtseva, E.Y.; Belik, Y.A.; Kuzmin, S.M.; Kharlamova, T.S.; Kulinich, S.A.; Svetlichnyi, V.A.; Vodyankina, O.V. Electrochemical Study of Semiconductor Properties for Bismuth Silicate-Based Photocatalysts Obtained via Hydro-/Solvothermal Approach. Materials 2022, 15, 4099. https://doi.org/10.3390/ma15124099
Shabalina AV, Gotovtseva EY, Belik YA, Kuzmin SM, Kharlamova TS, Kulinich SA, Svetlichnyi VA, Vodyankina OV. Electrochemical Study of Semiconductor Properties for Bismuth Silicate-Based Photocatalysts Obtained via Hydro-/Solvothermal Approach. Materials. 2022; 15(12):4099. https://doi.org/10.3390/ma15124099
Chicago/Turabian StyleShabalina, Anastasiia V., Ekaterina Y. Gotovtseva, Yulia A. Belik, Sergey M. Kuzmin, Tamara S. Kharlamova, Sergei A. Kulinich, Valery A. Svetlichnyi, and Olga V. Vodyankina. 2022. "Electrochemical Study of Semiconductor Properties for Bismuth Silicate-Based Photocatalysts Obtained via Hydro-/Solvothermal Approach" Materials 15, no. 12: 4099. https://doi.org/10.3390/ma15124099
APA StyleShabalina, A. V., Gotovtseva, E. Y., Belik, Y. A., Kuzmin, S. M., Kharlamova, T. S., Kulinich, S. A., Svetlichnyi, V. A., & Vodyankina, O. V. (2022). Electrochemical Study of Semiconductor Properties for Bismuth Silicate-Based Photocatalysts Obtained via Hydro-/Solvothermal Approach. Materials, 15(12), 4099. https://doi.org/10.3390/ma15124099