Effect of Various Surface Treatments on Wettability and Morphological Properties of Titanium Oxide Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Activation Treatments
- (i)
- Oxygen cold plasma activation—titania-coated glass slides were placed in a vacuum chamber of plasma cleaner (Pico, Diener Electronic, Ebhausen, Germany) and activated for one minute at 500 W power (using oxygen (pressure: 0.2 mbar, flow: 22 sccm)).
- (ii)
- UV activation—titania-coated glass slides were inserted into the UV chamber (KW-4AC UV Curer, Chemat) and subjected to irradiation with the use of four UV lamps with a total power of 16 W for 2 h.
- (iii)
- Titania-coated glass slide were immersed in 30 mL of 30% hydrogen peroxide. The Petri dish in which the activation was carried out was placed on a magnetic stirrer (RCT basic, IKA, Staufen im Breisgau, Germany) and gently stirred for 30 min.
2.3. Surface Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blanchart, P. Extraction, Properties and Applications of Titania. In Industrial Chemistry of Oxides for Emerging Applications; John Wiley & Sons Ltd.: West Sussex, UK, 2018; pp. 255–309. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium Dioxide Applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Adachi, T.; Latthe, S.S.; Gosavi, S.W.; Roy, N.; Suzuki, N.; Ikari, H.; Kato, K.; Katsumata, K.I.; Nakata, K.; Furudate, M.; et al. Photocatalytic, superhydrophilic, self-cleaning TiO2 coating on cheap, light-weight, flexible polycarbonate substrates. Appl. Surf. Sci. 2018, 458, 917–923. [Google Scholar] [CrossRef]
- Pantaroto, H.N.; Cordeiro, J.M.; Pereira, L.T.; de Almeida, A.B.; Nociti Junior, F.H.; Rangel, E.C.; Azevedo Neto, N.F.; da Silva, J.H.D.; Barão, V.A.R. Sputtered crystalline TiO2 film drives improved surface properties of titanium-based biomedical implants. Mater. Sci. Eng. C 2021, 119, 111638. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical Applications of TiO2 Nanostructures: Recent Advances. Int. J. Nanomedicine 2020, 15, 3447. [Google Scholar] [CrossRef]
- Bronze-Uhle, E.S.; Dias, L.F.G.; Trino, L.D.; Matos, A.A.; de Oliveira, R.C.; Lisboa-Filho, P.N. Physicochemical characterization of albumin immobilized on different TiO2 surfaces for use in implant materials. Colloids Surf. A Physicochem. Eng. Asp. 2019, 564, 39–50. [Google Scholar] [CrossRef]
- Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Mino, L.; Morales-García, Á.; Bromley, S.T.; Illas, F. Understanding the nature and location of hydroxyl groups on hydrated titania nanoparticles. Nanoscale 2021, 13, 6577–6585. [Google Scholar] [CrossRef]
- Nanayakkara, C.E.; Larish, W.A.; Grassian, V.H. Titanium dioxide nanoparticle surface reactivity with atmospheric gases, CO2, SO2, and NO2: Roles of surface hydroxyl groups and adsorbed water in the formation and stability of adsorbed products. J. Phys. Chem. C 2014, 118, 23011–23021. [Google Scholar] [CrossRef]
- Wu, C.Y.C.H.; Tu, K.J.; Deng, J.P.; Lo, Y.S.; Wu, C.Y.C.H. Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis. Materials 2017, 10, 566. [Google Scholar] [CrossRef]
- Pan, L.; Zou, J.J.; Zhang, X.; Wang, L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 2011, 133, 10000–10002. [Google Scholar] [CrossRef]
- Jo, M.R.; Yu, J.; Kim, H.J.; Song, J.H.; Kim, K.M.; Oh, J.M.; Choi, S.J. Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption. Nanomaterials 2016, 6, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampath, J.; Kullman, A.; Gebhart, R.; Drobny, G.; Pfaendtner, J. Molecular recognition and specificity of biomolecules to titanium dioxide from molecular dynamics simulations. Npj Comput. Mater. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Sano, K.I.; Shiba, K. A Hexapeptide Motif that Electrostatically Binds to the Surface of Titanium. J. Am. Chem. Soc. 2003, 125, 14234–14235. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Ma, A.; Li, C. Surface immobilization of TiO2 nanotubes with bone morphogenetic protein-2 synergistically enhances initial preosteoblast adhesion and osseointegration. Biomed Res. Int. 2019, 2019, 5697250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nucia, A.; Tomczyńska-Mleko, M.; Okoń, S.; Kowalczyk, K.; Terpiłowski, K.; Pérez-Huertas, S.; Nishinari, K.; Nastaj, M.; Mleko, S. Surface properties of gluten deposited on cold plasma-activated glass. Food Hydrocoll. 2021, 118, 106778. [Google Scholar] [CrossRef]
- Wiącek, A.E.; Gozdecka, A.; Jurak, M.; Przykaza, K.; Terpiłowski, K. Wettability of plasma modified glass surface with bioglass layer in polysaccharide solution. Colloids Surf. A Physicochem. Eng. Asp. 2018, 551, 185–194. [Google Scholar] [CrossRef]
- Otitoju, T.A.; Ahmad, A.L.; Ooi, B.S. Superhydrophilic (superwetting) surfaces: A review on fabrication and application. J. Ind. Eng. Chem. 2017, 47, 19–40. [Google Scholar] [CrossRef]
- Bharti, B.; Kumar, S.; Lee, H.N.; Kumar, R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z. Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem. Mater. 2010, 22, 579–584. [Google Scholar] [CrossRef]
- Mills, A.; Crow, M. A study of factors that change the wettability of titania films. Int. J. Photoenergy 2008, 2008, 470670. [Google Scholar] [CrossRef]
- Stevens, N.; Priest, C.I.; Sedev, R.; Ralston, J. Wettability of Photoresponsive Titanium Dioxide Surfaces. Langmuir 2003, 19, 3272–3275. [Google Scholar] [CrossRef]
- Carretero-Genevrier, A.; Boissiere, C.; Nicole, L.; Grosso, D. Distance dependence of the photocatalytic efficiency of TiO2 revealed by in situ ellipsometry. J. Am. Chem. Soc. 2012, 134, 10761–10764. [Google Scholar] [CrossRef] [PubMed]
- Masood, M.T.; Weinberger, C.; Qudsia, S.; Rosqvist, E.; Sandberg, O.J.; Nyman, M.; Sandén, S.; Vivo, P.; Aitola, K.; Lund, P.D.; et al. Influence of titanium dioxide surface activation on the performance of mesoscopic perovskite solar cells. Thin Solid Films 2019, 686, 137418. [Google Scholar] [CrossRef]
- Giammaria, G.; Van Rooij, G.; Lefferts, L. Plasma Catalysis: Distinguishing between Thermal and Chemical Effects. Catalysts 2019, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.J.; Waqar, A. Surface Engineered Surgical Tools and Medical Devices; Springer: New York, NY, USA, 2007; pp. 49–63. [Google Scholar] [CrossRef]
- Curci, R.; Edwards, J.O. Activation of Hydrogen Peroxide by Organic Compounds. Available online: https://link.springer.com/chapter/10.1007/978-94-017-0984-2_3 (accessed on 7 June 2022).
- Boonstra, A.H.; Mutsaers, C.A.H.A. Adsorption of hydrogen peroxide on the surface of titanium dioxide. J. Phys. Chem. 2002, 79, 1940–1943. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Perron, H.; Vandenborre, J.; Domain, C.; Drot, R.; Roques, J.; Simoni, E.; Ehrhardt, J.J.; Catalette, H. Combined investigation of water sorption on TiO2 rutile (1 1 0) single crystal face: XPS vs. periodic DFT. Surf. Sci. 2007, 601, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Barczak, M.; Bandosz, T.J. Evaluation of nitrogen- and sulfur-doped porous carbon textiles as electrode materials for flexible supercapacitors. Electrochim. Acta 2019, 305, 125–136. [Google Scholar] [CrossRef]
- Unosson, E.; Welch, K.; Persson, C.; Engqvist, H. Stability and prospect of UV/H2O2 activated titania films for biomedical use. Appl. Surf. Sci. 2013, 285, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Drelich, J.; Chibowski, E. Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control. Langmuir 2010, 26, 18621–18623. [Google Scholar] [CrossRef] [PubMed]
- Drelich, J.; Chibowski, E.; Meng, D.D.; Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 7, 9804–9828. [Google Scholar] [CrossRef]
- Kanta, A.; Sedev, R.; Ralston, J. Thermally- and Photoinduced Changes in the Water Wettability of Low-Surface-Area Silica and Titania. Langmuir 2005, 21, 2400–2407. [Google Scholar] [CrossRef]
- Silber, D.; Kowalski, P.M.; Traeger, F.; Buchholz, M.; Bebensee, F.; Meyer, B.; Wöll, C. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry. Nat. Commun. 2016, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Benkoula, S.; Sublemontier, O.; Patanen, M.; Nicolas, C.; Sirotti, F.; Naitabdi, A.; Gaie-Levrel, F.; Antonsson, E.; Aureau, D.; Ouf, F.X.; et al. Water adsorption on TiO2 surfaces probed by soft X-ray spectroscopies: Bulk materials vs. isolated nanoparticles. Sci. Rep. 2015, 5, 15088. [Google Scholar] [CrossRef]
- Bullock, E.L.; Patthey, L.; Steinemann, S.G. Clean and hydroxylated rutile TiO2(110) surfaces studied by X-ray photoelectron spectroscopy. Surf. Sci. 1996, 352–354, 504–510. [Google Scholar] [CrossRef]
- Sham, T.K.; Lazarus, M.S. X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces. Chem. Phys. Lett. 1979, 68, 426–432. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Farahmand, N.; Łomot, D.; Sobczak, K.; Bandosz, T.J.; Colmenares, J.C. Ultrasound-activated TiO2/GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors. Chem. Eng. J. 2020, 395, 125099. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Qayyum, A.; Łomot, D.; Besenhard, M.O.; Lisovytskiy, D.; Bandosz, T.J.; Carlos Colmenares, J. Boosting the Photoactivity of Grafted Titania: Ultrasound-Driven Synthesis of a Multi-Phase Heterogeneous Nano-Architected Photocatalyst. Adv. Funct. Mater. 2021, 31, 2007115. [Google Scholar] [CrossRef]
- Luisa, M.; Gioia, D.; Martins, L.M.; Pastor, I.M.; Rychtowski, P.; Tryba, B.; Skrzypska, A.; Felczak, P.; Sré Nscek-Nazzal, J.; Wróbel, R.J.; et al. Role of the Hydroxyl Groups Coordinated toTiO2 Surface on the Photocatalytic Decomposition of Ethylene at Different Ambient Conditions. Catalysts 2022, 12, 386. [Google Scholar] [CrossRef]
- Li, W.; Du, D.; Yan, T.; Kong, D.; You, J.; Li, D. Relationship between surface hydroxyl groups and liquid-phase photocatalytic activity of titanium dioxide. J. Colloid Interface Sci. 2015, 444, 42–48. [Google Scholar] [CrossRef] [PubMed]
Sample | Method of Activation | AFM Roughness Data | ||
---|---|---|---|---|
Sq (nm) | Sa (nm) | Sdiff (%) | ||
R0 | untreated | 4.32 ± 0.3 | 2.97 ± 0.23 | 5.95 ± 0.44 |
RP | plasma | 3.97 ± 1.40 | 2.57 ± 0.55 | 5.24 ± 0.18 |
RU | UV | 4.11 ± 0.84 | 2.73 ± 0.57 | 5.56 ± 0.16 |
RH | H2O2 | 3.15 ± 0.36 | 2.27 ± 0.25 | 5.34 ± 0.19 |
Sample | Method of Activation | Contact Angle (Degrees) | |
---|---|---|---|
0 h | After 24 h | ||
R0 | untreated | 65.7 ± 2.8 | 65.7 ± 2.8 |
RP | plasma | 10.1 ± 1.5 | 39.9 ± 3.1 |
RU | UV | 9.4 ± 2.1 | 37.9 ± 1.9 |
RH | H2O2 | 58.3 ± 1.2 | 67.6 ± 2.1 |
Sample | Method of Activation | XPS Elemental Composition (at %) * | Oxygen Surface Species (at %) | ||||||
---|---|---|---|---|---|---|---|---|---|
%C | %O | %Ti | Ti:O Ratio | O2− | −OH (Bridging) | −OH (top) | Water | ||
R0 | untreated | 33.3 ± 3.0 | 44.3 ± 2.2 | 18.0 ± 0.9 | 0.41 | 33.8 | 6.1 | 3.3 | 1.1 |
RP | plasma | 26.8 ± 2.4 | 48.1 ± 1.8 | 20.3 ± 0.8 | 0.42 | 38.2 | 5.5 | 4.0 | 0.5 |
RU | UV | 24.4 ± 3.1 | 49.8 ± 2.2 | 21.3 ± 0.9 | 0.43 | 41.6 | 4.7 | 2.9 | 0.5 |
RH | H2O2 | 34.7 ± 2.8 | 42.9 ± 2.1 | 19.2 ± 0.9 | 0.45 | 35.6 | 3.8 | 2.8 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźmicz-Mirosław, E.; Kuśmierz, M.; Terpiłowski, K.; Śmietana, M.; Barczak, M.; Staniszewska, M. Effect of Various Surface Treatments on Wettability and Morphological Properties of Titanium Oxide Thin Films. Materials 2022, 15, 4113. https://doi.org/10.3390/ma15124113
Kuźmicz-Mirosław E, Kuśmierz M, Terpiłowski K, Śmietana M, Barczak M, Staniszewska M. Effect of Various Surface Treatments on Wettability and Morphological Properties of Titanium Oxide Thin Films. Materials. 2022; 15(12):4113. https://doi.org/10.3390/ma15124113
Chicago/Turabian StyleKuźmicz-Mirosław, Ewelina, Marcin Kuśmierz, Konrad Terpiłowski, Mateusz Śmietana, Mariusz Barczak, and Magdalena Staniszewska. 2022. "Effect of Various Surface Treatments on Wettability and Morphological Properties of Titanium Oxide Thin Films" Materials 15, no. 12: 4113. https://doi.org/10.3390/ma15124113
APA StyleKuźmicz-Mirosław, E., Kuśmierz, M., Terpiłowski, K., Śmietana, M., Barczak, M., & Staniszewska, M. (2022). Effect of Various Surface Treatments on Wettability and Morphological Properties of Titanium Oxide Thin Films. Materials, 15(12), 4113. https://doi.org/10.3390/ma15124113