Predicting the Compressive Strength of the Cement-Fly Ash–Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method
Abstract
:1. Introduction
2. Methodology
2.1. Dataset Collection
2.2. Applied Machine-Learning Models
3. Results and Discussion
3.1. Hyperparameter Tuning
3.2. Model Evaluation
3.3. Variable Importance Evaluation
4. Conclusions
- 1.
- Using FA to tune the hyperparameter of RF, the RSME value decreases greatly at first and then tends to be stable with the increase in iteration number, this proves that FA can achieve better results in adjusting the hyperparameter optimization of the RF model, which is better than the random selection of hyperparameters.
- 2.
- The RF model tuned by FA can be used to predict the compressive strength of concrete and achieve better results. The R values of the training set and the test set were 0.9747 and 0.8753, respectively, and the RSME values were 3.6037 and 6.6271, respectively—that is, the training set and the test set both had high R values and low RSME values, and the consistency between the predicted value and the actual value of the concrete compressive strength of the training set and the test set was high. The above two conclusions prove that the FA and RF mixed models achieved better results in predicting the compressive strength of concrete.
- 3.
- The importance scores of age, cement, blast furnace slag, water, superplasticizer, fly ash, coarse aggregate, and fine aggregate to the compressive strength of concrete decreased successively and were all positive. That is, the compressive strength of concrete was proportional to these eight variables, and the importance of these eight variables to the compressive strength of concrete decreased in turn.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1 Code of Firefly Algorithm |
begin Objective function f(x), x = (x1, ..., xd) T Generate initial population of fireflies xi (i = 1, 2, ..., n) Light intensity Ii at xi is determined by f(xi) Define light absorption coefficient γ while (t<MaxGeneration) for i = 1 : n all n fireflies for j = 1 : i all n fireflies if (Ij > Ii) Move firefly i towards j in d-dimension via Levy flights end if Attractiveness varies with distance r via exp[−γr] Evaluate new solutions and update light intensity end for j end for i Rank the fireflies and find the current best end while Postprocess results and visualization end |
References
- Batis, G.; Pantazopoulou, P.; Tsivilis, S.; Badogiannis, E. The effect of metakaolin on the corrosion behavior of cement mortars. Cem. Concr. Compos. 2005, 27, 125–130. [Google Scholar] [CrossRef]
- Ambroziak, A.; Ziolkowski, P. Concrete compressive strength under changing environmental conditions during placement processes. Materials 2020, 13, 4577. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Wu, X.; Zhou, M.; Sabri, M.M.; Huang, J. Intelligent design of building materials: Development of an ai-based method for cement-slag concrete design. Materials 2022, 15, 3833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fan, Y.; Huang, J.; Shah, S.P. Effect of nano-metakaolinite clay on hydration behavior of cement-based materials at early curing age. Constr. Build. Mater. 2021, 291, 123107. [Google Scholar] [CrossRef]
- Wang, Q.-A.; Zhang, J.; Huang, J. Simulation of the compressive strength of cemented tailing backfill through the use of firefly algorithm and random forest model. Shock Vib. 2021, 2021, 5536998. [Google Scholar] [CrossRef]
- Chokkalingam, R.B.; Santhanam, M. Durability characteristics of high early strength concrete. Curr. Sci. 2017, 113, 1568–1577. [Google Scholar] [CrossRef]
- Xu, W.; Huang, X.; Huang, J.; Yang, Z. Structural analysis of backfill highway subgrade on the lower bearing capacity foundation using the finite element method. Adv. Civ. Eng. 2021, 2021, 1690168. [Google Scholar] [CrossRef]
- Liang, X.; Yu, X.; Chen, C.; Ding, G.; Huang, J. Towards the low-energy usage of high viscosity asphalt in porous asphalt pavements: A case study of warm-mix asphalt additives. Case Stud. Constr. Mater. 2022, 16, e00914. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Ren, J.; Chen, H. Anti-rutting performance of the damping asphalt mixtures (dams) made with a high content of asphalt rubber (ar). Constr. Build. Mater. 2021, 271, 121878. [Google Scholar] [CrossRef]
- Huang, J.; Li, X.; Kumar, G.S.; Deng, Y.; Gong, M.; Dong, N. Rheological properties of bituminous binder modified with recycled waste toner. J. Clean. Prod. 2021, 317, 128415. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, H.; Zhang, L.; Zhao, Z.; Xu, Y.; Cheng, Y.; Wang, M.; Chen, J.; Wang, J. Design optimization of cement grouting material based on adaptive boosting algorithm and simplicial homology global optimization. J. Build. Eng. 2022, 49, 104049. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, L.; Zhao, H.; Zhao, Z.; Wang, S. Determination of the fatigue equation for the cement-stabilized cold recycled mixtures with road construction waste materials based on data-driven. Int. J. Fatigue 2022, 158, 106765. [Google Scholar] [CrossRef]
- Ren, J.; Yin, C. Investigating mechanical characteristics of aggregate structure for road materials. Int. J. Pavement Eng. 2022, 23, 372–386. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Yao, P.; Yang, D.; Shen, J. Effects of fire-damaged concrete waste on the properties of its preparing recycled aggregate, recycled powder and newmade concrete. J. Mater. Res. Technol. 2021, 15, 1030–1045. [Google Scholar] [CrossRef]
- Wang, X.; Xu, T.; Andrade, M.J.d.; Rampalli, I.; Cao, D.; Haque, M.; Roy, S.; Baughman, R.H.; Lu, H. The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites. In Challenges in Mechanics of Time Dependent Materials; Springer: Berlin, Germany, 2021; Volume 2, pp. 25–32. [Google Scholar]
- Cao, D.; Malakooti, S.; Kulkarni, V.N.; Ren, Y.; Lu, H. Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mech. Time-Depend. Mater. 2021, 25, 353–363. [Google Scholar] [CrossRef]
- Cao, D.; Malakooti, S.; Kulkarni, V.N.; Ren, Y.; Liu, Y.; Nie, X.; Qian, D.; Griffith, D.T.; Lu, H. The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 2022, 25, 71–93. [Google Scholar] [CrossRef]
- Liew, K.M.; Sojobi, A.O.; Zhang, L.W. Green concrete: Prospects and challenges. Constr. Build. Mater. 2017, 156, 1063–1095. [Google Scholar] [CrossRef]
- Pani, L.; Francesconi, L.; Rombi, J.; Stochino, F.; Mistretta, F. The Role of Parent Concrete in Recycled Aggregate Concrete. In Proceedings of the 20th International Conference on Computational Science and Its Applications (ICCSA), Electr Network, Cagliari, Italy, 1–4 July 2020; pp. 368–378. [Google Scholar]
- Ngohpok, C.; Sata, V.; Satiennam, T.; Klungboonkrong, P.; Chindaprasirt, P. Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates. KSCE J. Civ. Eng. 2018, 22, 1369–1376. [Google Scholar] [CrossRef]
- Wang, Q.-A.; Zhang, C.; Ma, Z.-G.; Huang, J.; Ni, Y.-Q.; Zhang, C. Shm deformation monitoring for high-speed rail track slabs and bayesian change point detection for the measurements. Constr. Build. Mater. 2021, 300, 124337. [Google Scholar] [CrossRef]
- Tian, Y.; Jin, N.; Jin, X. Coupling effect of temperature and relative humidity diffusion in concrete under ambient conditions. Constr. Build. Mater. 2018, 159, 673–689. [Google Scholar] [CrossRef]
- Wang, X.-Y. Kinetic hydration heat modeling for high-performance concrete containing limestone powder. Adv. Mater. Sci. Eng. 2017, 2017, 4090265. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-Y. Analysis of hydration-mechanical-durability properties of metakaolin blended concrete. Appl. Sci. 2017, 7, 1087. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Park, K.-B. Analysis of the compressive strength development of concrete considering the interactions between hydration and drying. Cem. Concr. Res. 2017, 102, 1–15. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, H.K. Hydration kinetics of high-strength concrete with untreated coal bottom ash for internal curing. Cem. Concr. Compos. 2018, 91, 67–75. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Se-Hwan, K.; Yang, W.-H.; Young-Sun, K.; Jun-Do, K.; Gun-cheol, L. An experimental study on the hydration heat of concrete using phosphate based inorganic salt. J. Korea Inst. Build. Constr. 2020, 20, 489–495. [Google Scholar]
- Zhu, K.; Yao, L.Y.; Ma, Q. Study on the durability of high volume fly ash pavement concrete. In Proceedings of the International Conference on Resource Environment and Information Technology (REIT 2010), Kaifeng, China, 19–21 August 2010; pp. 535–538. [Google Scholar]
- Huang, S.J.; Ge, Z.C.; Zhou, L.; Zhou, J.L. Effect of fly ash on expansion properties of concrete added with expansive agents. In Proceedings of the International Conference on Biotechnology, Chemical and Materials Engineering (CBCME 2011), Kunming, China, 28–29 December 2011; pp. 684–687. [Google Scholar]
- Vibha, V.; Reddy, B.V.V. A study on properties of concrete made with processed granulated blast furnace slag as fine aggregate. In Proceedings of the 5th International Conference on Building Materials and Construction (ICBMC), Tokyo, Japan, 26–29 February 2020. [Google Scholar]
- Wang, A.G.; Deng, M.; Sun, D.S.; Li, B.; Tang, M.S. Effect of crushed air-cooled blast furnace slag on mechanical properties of concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2012, 27, 758–762. [Google Scholar] [CrossRef]
- Cui, X.N.; Wang, Q.C.; Zhang, R.L.; Dai, J.P.; Li, S. Machine learning prediction of concrete compressive strength with data enhancement. J. Intell. Fuzzy Syst. 2021, 41, 7219–7228. [Google Scholar] [CrossRef]
- Al-Shamiri, A.K.; Yuan, T.F.; Kim, J.H. Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete. Materials 2020, 13, 1023. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Long, Y.; Wang, H.; Wang, Y.-F. Modeling and sensitivity analysis of concrete creep with machine learning methods. J. Mater. Civ. Eng. 2021, 33, 04021206. [Google Scholar] [CrossRef]
- Park, J.-R.; Lee, H.-J.; Yang, K.-H.; Kook, J.-K.; Kim, S. Study on influence of range of data in concrete compressive strength with respect to the accuracy of machine learning with linear regression. Appl. Sci. 2021, 11, 3866. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Noorian-Bidgoli, M.; Armaghani, D.J.; Khamesi, H. Feasibility of pso-ann model for predicting surface settlement caused by tunneling. Eng. Comput. 2016, 32, 705–715. [Google Scholar] [CrossRef]
- Ren, J.; Xu, Y.; Zhao, Z.; Chen, J.; Cheng, Y.; Huang, J.; Yang, C.; Wang, J. Fatigue prediction of semi-flexible composite mixture based on damage evolution. Constr. Build. Mater. 2022, 318, 126004. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Monjezi, M.; Shahnazar, A.; Armaghani, D.J.; Farazmand, A. Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement 2015, 75, 289–297. [Google Scholar] [CrossRef]
- Ren, J.; Xu, Y.; Huang, J.; Wang, Y.; Jia, Z. Gradation optimization and strength mechanism of aggregate structure considering macroscopic and mesoscopic aggregate mechanical behaviour in porous asphalt mixture. Constr. Build. Mater. 2021, 300, 124262. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Armaghani, D.J.; Amnieh, H.B.; Abd Majid, M.Z.; Tahir, M.M. Application of pso to develop a powerful equation for prediction of flyrock due to blasting. Neural Comput. Appl. 2017, 28, 1043–1050. [Google Scholar] [CrossRef]
- Ren, J.; Li, D.; Xu, Y.; Huang, J.; Liu, W. Fatigue behaviour of rock asphalt concrete considering moisture, high-temperature, and stress level. Int. J. Pavement Eng. 2021, 1–11. [Google Scholar] [CrossRef]
- Hajihassani, M.; Armaghani, D.J.; Marto, A.; Mohamad, E.T. Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bull. Eng. Geol. Environ. 2015, 74, 873–886. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Raja, R.S.N.S.B.; Faizi, K.; Rashid, A.S.A. Developing a hybrid pso–ann model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput. Appl. 2017, 28, 391–405. [Google Scholar] [CrossRef]
- Chen, W.; Hasanipanah, M.; Rad, H.N.; Armaghani, D.J.; Tahir, M. A new design of evolutionary hybrid optimization of svr model in predicting the blast-induced ground vibration. Eng. Comput. 2019, 37, 1455–1471. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of hybrid intelligent models for predicting tbm penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 2017, 63, 29–43. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mirzaei, F.; Shariati, M.; Trung, N.T.; Shariati, M.; Trnavac, D. Hybrid ann-based techniques in predicting cohesion of sandy-soil combined with fiber. Geomech. Eng. 2020, 20, 191–205. [Google Scholar]
- Cai, M.; Koopialipoor, M.; Armaghani, D.J.; Thai Pham, B. Evaluating slope deformation of earth dams due to earthquake shaking using mars and gmdh techniques. Appl. Sci. 2020, 10, 1486. [Google Scholar] [CrossRef] [Green Version]
- Armaghani, D.J.; Koopialipoor, M.; Marto, A.; Yagiz, S. Application of several optimization techniques for estimating tbm advance rate in granitic rocks. J. Rock Mech. Geotech. Eng. 2019, 11, 779–789. [Google Scholar] [CrossRef]
- Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Kotsonis, E.A.; Lourenço, P.B. Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Comput. Appl. 2021, 33, 13089–13121. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, M.; Yuan, H.; Sabri, M.M.S.; Li, X. Prediction of the compressive strength for cement-based materials with metakaolin based on the hybrid machine learning method. Materials 2022, 15, 3500. [Google Scholar] [CrossRef]
- Xu, W.; Huang, X.; Yang, Z.; Zhou, M.; Huang, J. Developing hybrid machine learning models to determine the dynamic modulus (e*) of asphalt mixtures using parameters in witczak 1–40d model: A comparative study. Materials 2022, 15, 1791. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, M.; Sabri, M.M.S.; Yuan, H. A novel neural computing model applied to estimate the dynamic modulus (dm) of asphalt mixtures by the improved beetle antennae search. Sustainability 2022, 14, 5938. [Google Scholar] [CrossRef]
- Ma, H.; Liu, J.; Zhang, J.; Huang, J. Estimating the compressive strength of cement-based materials with mining waste using support vector machine, decision tree, and random forest models. Adv. Civ. Eng. 2021, 2021, 6629466. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Gao, Y. Intelligently predict the rock joint shear strength using the support vector regression and firefly algorithm. Lithosphere 2021, 2021, 2467126. [Google Scholar] [CrossRef]
- Huang, J.; Duan, T.; Zhang, Y.; Liu, J.; Zhang, J.; Lei, Y. Predicting the permeability of pervious concrete based on the beetle antennae search algorithm and random forest model. Adv. Civ. Eng. 2020, 2020, 8863181. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, J.; Li, M.; Dai, Z.; Jiang, R.; Zhang, J. Chemical modification of combusted coal gangue for u(vi) adsorption: Towards a waste control by waste strategy. Sustainability 2021, 13, 8421. [Google Scholar] [CrossRef]
- Huang, J.; Duan, T.; Lei, Y.; Hasanipanah, M. Finite element modeling for the antivibration pavement used to improve the slope stability of the open-pit mine. Shock Vib. 2020, 2020, 6650780. [Google Scholar] [CrossRef]
- Huang, J.; Asteris, P.G.; Pasha, S.M.K.; Mohammed, A.S.; Hasanipanah, M. A new auto-tuning model for predicting the rock fragmentation: A cat swarm optimization algorithm. Eng. Comput. 2020, 38, 2209–2220. [Google Scholar] [CrossRef]
- Ahmad, M.; Tang, X.-W.; Ahmad, F.; Pirhadi, N.; Wan, X.; Cheng, K. Probabilistic evaluation of cpt-based seismic soil liquefaction potential: Towards the integration of interpretive structural modeling and bayesian belief network. Math. Biosci. Eng. 2021, 18, 9233–9252. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Alyousef, R.; Suhatril, M.; Baharom, S.; Alabduljabbar, H.; Alaskar, A.; Assilzadeh, H. Influence of porosity and cement grade on concrete mechanical properties. Adv. Concr. Constr. 2020, 10, 393–402. [Google Scholar]
- Huang, J.; Zhou, M.; Yuan, H.; Sabri, M.M.; Li, X. Towards sustainable construction materials: A comparative study of prediction models for green concrete with metakaolin. Buildings 2022, 12, 772. [Google Scholar]
- Yeh, I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
Variables | Minimum | Maximum | Median | Mode | Average | Std. | Variance |
---|---|---|---|---|---|---|---|
Cement (kg/m3) | 132 | 491 | 213.8 | 446 | 446 | 106.2 | 1127.82 |
Blast furnace slag (kg/m3) | 11 | 214 | 97 | 24 | 24 | 58.28 | 3388.44 |
Fly ash (kg/m3) | 24.5 | 195 | 122 | 141 | 141 | 38.5 | 1479.09 |
Water (kg/m3) | 121.8 | 247 | 175.1 | 162 | 162 | 21.26 | 451.99 |
Superplasticizer (kg/m3) | 1.7 | 22.1 | 8.4 | 6 | 6 | 3.46 | 11.98 |
Coarse aggregate (kg/m3) | 814 | 1080.8 | 942 | 967 | 967 | 78.46 | 5156.35 |
Fine aggregate (kg/m3) | 612 | 880 | 764.4 | 764.4 | 801 | 58.23 | 3391.26 |
Age (days) | 3 | 100 | 28 | 28 | 28 | 23.71 | 561.76 |
Compressive strength (MPa) | 7.32 | 76.24 | 36.44 | 36.44 | 27.68 | 14.19 | 201.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Sabri, M.M.S.; Ulrikh, D.V.; Ahmad, M.; Alsaffar, K.A.M. Predicting the Compressive Strength of the Cement-Fly Ash–Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method. Materials 2022, 15, 4193. https://doi.org/10.3390/ma15124193
Huang J, Sabri MMS, Ulrikh DV, Ahmad M, Alsaffar KAM. Predicting the Compressive Strength of the Cement-Fly Ash–Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method. Materials. 2022; 15(12):4193. https://doi.org/10.3390/ma15124193
Chicago/Turabian StyleHuang, Jiandong, Mohanad Muayad Sabri Sabri, Dmitrii Vladimirovich Ulrikh, Mahmood Ahmad, and Kifayah Abood Mohammed Alsaffar. 2022. "Predicting the Compressive Strength of the Cement-Fly Ash–Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method" Materials 15, no. 12: 4193. https://doi.org/10.3390/ma15124193
APA StyleHuang, J., Sabri, M. M. S., Ulrikh, D. V., Ahmad, M., & Alsaffar, K. A. M. (2022). Predicting the Compressive Strength of the Cement-Fly Ash–Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method. Materials, 15(12), 4193. https://doi.org/10.3390/ma15124193