The Effects of Sn Doping MnNiFeO4 NTC Ceramic: Preparation, Microstructure and Electrical Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. TG-DSC Analysis of the Ceramic Precursors
3.2. FTIR Results of S1 and S4 Precursor Powders
3.3. X-ray Results of the Calcined Powders and Sintered Samples
3.4. SEM and EDS Element Maps of Sintered Samples
3.5. XPS Results of Sintered S1 and S4 Samples
3.6. Electrical Properties of the As-Prepared NTC Ceramics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antonio, F. Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective. J. Am. Ceram. Soc. 2009, 92, 967–983. [Google Scholar] [CrossRef]
- Guan, F.; Lin, X.J.; Dai, H.; Wang, J.R.; Cheng, X.; Huang, S.F. LaMn1−xTixO3-NiMn2O4 (0 ≤ x ≤ 0.7): A composite NTC ceramic with controllable electrical property and high stability. J. Eur. Ceram. Soc. 2019, 19, 30146–30153. [Google Scholar] [CrossRef]
- Li, H.B.; Thayi, I.P.L.; Ma, X.H.; Sang, X.; Zhang, H.M.; Chang, A.M. Improved aging behavior of Na-doped Mn1.95Co0.21Ni0.84O4 ceramics thermistors. Ceram. Int. 2020, 46, 24365–24370. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, H.; Ma, P.; Chang, A.; Jiang, H. Core–shell NTC materials with low thermal constant and high resistivity for wide-temperature thermistor ceramics. J. Am. Ceram. Soc. 2019, 102, 4393–4398. [Google Scholar] [CrossRef]
- Chen, L.; Kong, W.W.; Yao, J.C.; Zhang, H.; Gao, B.; Li, Y.; Bu, H.; Chang, A.; Jiang, C. Synthesis and characterization of Mn–Co–Ni–O ceramic nanoparticles by reverse microemulsion method. Ceram. Int. 2015, 41, 2847–2851. [Google Scholar]
- Zhang, M.; Li, M.; Zhang, H.; Tuokedaerhan, K.; Chang, A. Synthesis of pilot-scale Co2Mn1.5Fe2.1Zn0.4O8 fabricated by hydrothermal method for NTC thermistor. J. Alloys. Compd. 2019, 797, 1295–1298. [Google Scholar] [CrossRef]
- Feltz, A.; Polzl, W. Spinel forming ceramics of the system FexNiyMn3-x-yO4 for high temperature NTC thermistor applications. J. Eur. Ceram. Soc. 2000, 20, 2353–2366. [Google Scholar] [CrossRef]
- Acharya, N.; Sagar, R. Structure and electrical properties characterization of NiMn2O4 NTC ceramics. Inorg. Chem. Comm. 2021, 132, 108856. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.; Lu, Y.; Gao, H.; Qian, H.; Ding, J. Effect of Zn substitution on the phase, microstructure and electrical properties of Ni0.6Cu0.5ZnxMn1.9-xO4 (0 ≤ x ≤ 1) NTC ceramics. Mat. Sci. Eng. B. 2014, 188, 66–71. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, B.; Yang, P.; Winnubst, L.; Chen, C. Effects of Cu and Zn co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics. J. Eur. Ceram. Soc. 2008, 28, 35–40. [Google Scholar] [CrossRef]
- Park, K.; Lee, J.K.; Kim, S.J.; Seo, W.S.; Cho, W.S.; Lee, C.W.; Nahm, S. The effect of Zn on the microstructure and electrical properties of Mn1.17-xNi0.93Co0.9ZnxO4 (0 ≤ x ≤ 0.075) NTC thermistors. J. Alloys Compd. 2009, 467, 310–316. [Google Scholar] [CrossRef]
- Li, D.; Zhao, S.; Xiong, K.; Bao, H.; Nan, C. Aging improvement in Cu-containing NTC ceramics prepared by co-precipitation method. J. Alloys Compd. 2014, 582, 283–288. [Google Scholar] [CrossRef]
- Park, K.; Han, I.H. Effect of Al2O3 addition on the microstructure and electrical properties of (Mn0.37Ni0.3Co0.33−xAlx)O4 (0 ≤ x ≤ 0.03) NTC thermistors. Mat. Sci. Eng. B 2005, 119, 55–60. [Google Scholar] [CrossRef]
- Metzmacher, C.; Mikkenie, R.; Groen, W.A. Indium-containing ceramics with negative temperature coefficient characteristics. J. Eur. Ceram. Soc. 2000, 20, 997–1002. [Google Scholar] [CrossRef]
- Park, K.; Han, I.H. Effect of Cr2O3 addition on the microstructure and electrical properties of Mn-Ni-Co oxides NTC thermistors. J. Electroceram. 2006, 17, 1069–1073. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Chang, A.; Ma, X.; Xie, J.; Yang, L. Fast response and high stability Mn-Co-Ni-Al-O NTC microbeads thermistors. J. Am. Ceram. Soc. 2021, 104, 3811–3817. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, H.; Chang, A.; Guan, F.; Zhang, B.; Zhao, P. Effect of Mg substitution on microstructure and electrical properties of Mn1.25Ni0.75Co1.02-xMgxO4 (0 ≤ x ≤ 1) NTC ceramics. J. Mater. Sci.: Mater. Elec. 2012, 23, 851–857. [Google Scholar] [CrossRef]
- Zhang, H.M.; Chang, A.M.; Peng, C.W. Preparation and characterization of Fe3+ doped Ni0.9Co 0.8Mn1.3-xFexO4 (0 ≤ x ≤ 0.7) negative temperature coefficient ceramic materials. Microelectron. Eng. 2011, 88, 2934–2940. [Google Scholar] [CrossRef]
- Park, K. Fabrication and Electrical Properties of Mn-Ni-Co-Cu-Si Oxides Negative Temperature Coefficient Thermistors. J. Am. Ceram. Soc. 2005, 88, 862–866. [Google Scholar] [CrossRef]
- Park, K.; Yun, S.J. Effect of SiO2 addition on the electrical stability of (Mn2.1-xNi0.9Six)O4 (0≦x≦0.18) negative temperature coefficient thermistors. Mater. Lett. 2004, 58, 933–937. [Google Scholar] [CrossRef]
- Park, K. Microstructure and electrical properties of Ni1.0Mn2−xZrxO4 (0 ≤ x ≤ 1.0) negative temperature coefficient thermistors. Mate. Sci. Eng. B 2003, 104, 9–14. [Google Scholar] [CrossRef]
- Ma, C.; Liu, Y.; Lu, Y.; Qian, H. Preparation and electrical properties of Ni0.6Mn2.4-xTixO4 NTC ceramics. J. Alloys Compd. 2015, 650, 931–935. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Zhang, Y.; Zhang, R.; Qin, P.; Chen, C.; Winnubst, L. Preparation and electrical properties of Ni0.6Mn2.4-xSnxO4 NTC ceramics. Ceram. Intern. 2014, 40, 4875–4878. [Google Scholar] [CrossRef]
- Diefallah, E.M.; Gabal, M.A.; El-Bellihi, A.A.; Eissa, N.A. Nonisothermal decomposition of CdC2O4-FeC2O4 mixtures in air. Thermochim. Acta 2001, 376, 43–50. [Google Scholar] [CrossRef]
- Cong, C.; Hong, J.; Luo, S.; Tao, H.; Zhang, K. Kinetics of Thermal Decomposition of Zn1-xMnxC2O4·2H2O in Air. Chin. J. Chem. 2006, 24, 499–503. [Google Scholar] [CrossRef]
- Angermann, A. Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate. J. Mater. Sci. 2008, 43, 5123–5130. [Google Scholar] [CrossRef]
- Willard, M.A.; Nakamura, Y.; Laughlin, D.E.; McHenry, M.E. Magnetic properties of ordered and disordered spinel-phase ferrimagnets. J. Am. Ceram. Soc. 1999, 82, 3342–3346. [Google Scholar] [CrossRef]
- Baltzer, P.K.; White, J.G. Crystallographic and magnetic studies of the system (NiFe2O4)1-x + (NiMn2O4)x. J. Appl. Phys. 1958, 29, 445–447. [Google Scholar] [CrossRef]
- Hastings, J.M.; Corliss, L.M. Neutron diffraction study of manganese ferrite. Phys. Rev. 1961, 104, 328–331. [Google Scholar] [CrossRef]
- Waldron, R.D. Infrared spectrum of ferrites. Phys. Rev. 1955, 99, 1727–1735. [Google Scholar] [CrossRef]
- Battault, T.; Legros, R.; Rousset, A. Structure and electrical properties of iron manganite spinels in relation with cationic distribution. J. Eur. Ceram. Soc. 1995, 15, 1141–1147. [Google Scholar] [CrossRef]
- Masek, K.; Vaclavu, M.; Babor, P.; Matolın, V. Sn-CeO2 thin films prepared by RF magnetron sputtering: XPS and SIMS study. Appl. Surf. Sci. 2009, 255, 6656–6660. [Google Scholar] [CrossRef]
- Groen, W.A.; Metzmacher, C.; Zaspalis, V.; Huppertz, P.; Schuurman, S. Aging of NTC ceramics in the system Mn-Ni-Fe-O. J. Eur. Ceram. Soc. 2001, 21, 1793–1796. [Google Scholar] [CrossRef]
- Yokoyama, T.; Kondou, K.; Komeya, K.; Meguro, T.; Abe, Y.; Sasamoto, T. Preparation and electrical properties of monophase cubic spinel, Mn1.5Co0.95Ni0.55O4, derived from rock salt type oxide. J. Mater. Sci. 1995, 30, 1845–1848. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
Compositions | Mn1−xSnxNiFeO4 | MnNi0.91Sn0.09FeO4 | MnNiFe0.91Sn0.09O4 | |||
---|---|---|---|---|---|---|
X = 0.0 | X = 0.03 | X = 0.06 | X = 0.09 | |||
Designated | S1 | S2 | S3 | S4 | S5 | S6 |
Specimen | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|
Lattice parameters (Å) | 8.3828 | 8.3831 | 8.3832 | 8.3834 | 8.3833 | 8.3834 |
Theoretical densities (g·cm−3) | 5.265 | 5.308 | 5.351 | 5.394 | 5.386 | 5.392 |
Relative densities (%) | 96.2 | 98.9 | 97.8 | 97.1 | 98.8 | 96.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; He, C.; Wu, R.; Xu, H.; Zhang, F. The Effects of Sn Doping MnNiFeO4 NTC Ceramic: Preparation, Microstructure and Electrical Properties. Materials 2022, 15, 4274. https://doi.org/10.3390/ma15124274
Li D, He C, Wu R, Xu H, Zhang F. The Effects of Sn Doping MnNiFeO4 NTC Ceramic: Preparation, Microstructure and Electrical Properties. Materials. 2022; 15(12):4274. https://doi.org/10.3390/ma15124274
Chicago/Turabian StyleLi, Dongcai, Cangbao He, Ranran Wu, Haiyan Xu, and Fengjun Zhang. 2022. "The Effects of Sn Doping MnNiFeO4 NTC Ceramic: Preparation, Microstructure and Electrical Properties" Materials 15, no. 12: 4274. https://doi.org/10.3390/ma15124274
APA StyleLi, D., He, C., Wu, R., Xu, H., & Zhang, F. (2022). The Effects of Sn Doping MnNiFeO4 NTC Ceramic: Preparation, Microstructure and Electrical Properties. Materials, 15(12), 4274. https://doi.org/10.3390/ma15124274