Microbiologically Induced Concrete Corrosion: A Concise Review of Assessment Methods, Effects, and Corrosion-Resistant Coating Materials
Abstract
:1. Introduction
2. Background
3. Biocorrosion Assessment Methods in Concrete
3.1. Chemical Tests
3.2. Laboratory Simulation Tests
3.3. In Situ Tests
4. Effects of Biocorrosion on Concrete Properties
4.1. Visual Changes
4.2. Microscopic Changes
4.3. pH Variations
4.4. Mass Loss
4.5. Strength Loss
5. Corrosion-Resistant Coating Materials
6. Conclusions and Future Perspectives
- Due to the lack of standardized testing methods, various researchers have developed different methods to study biocorrosion. Therefore, it is difficult to compare the test procedures and results obtained with various methods, demanding an urgent need to develop standard testing methods and acceleration procedures by considering all the aspects of MICC.
- A clear relation between the corrosion behavior (corrosion rate) obtained in the laboratory tests and that from the site is still not well established. To better understand the corrosion behavior, there is an urgent need to develop quantitative models which can accurately predict each MICC process.
- More investigations are required to understand the microbial activities throughout different stages of the MICC process.
- Other areas which require attention for further studies could be the rate-limiting factors for microbial activities at different stages, the roles of different bacteria species at each stage of the corrosion processes, the role of the corrosion layer as a growth matrix and food provider for bacteria, and the distribution of different bacteria species within corrosion layer.
- Lastly, the effectiveness and applicability of the coating materials, such as polyurethane, cement, geopolymer, a blended mix of geopolymer and magnesium phosphate, resin powder with (PVA), nylon fibers, silica fume, nanosilica, BFSC, and CAC, are discussed in detail. Although some of these materials provide significant improvements in concretes performance against biocorrosion, attention should be given to developing novel sustainable materials which can entirely withstand extremely aggressive and corrosive sewer environments.
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Roghanian, N.; Banthia, N. Development of a sustainable coating and repair material to prevent bio-corrosion in concrete sewer and waste-water pipes. Cem. Concr. Compos. 2019, 100, 99–107. [Google Scholar] [CrossRef]
- Hvitved-Jacobsen, T. Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Yongsiri, C.; Nielsen, A.; Abdul-Talib, S. Sewer microbial processes, emissions and impacts. In Proceedings of the 3rd International Conference on Sewer Processes and Networks, Paris, France, 15–17 April 2002; pp. 15–17. [Google Scholar]
- Wu, M.; Wang, T.; Wu, K.; Kan, L. Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Constr. Build. Mater. 2020, 239, 117813. [Google Scholar] [CrossRef]
- Mu, S.; Zhou, H.; Shi, L.; Liu, J.; Cai, J.; Wang, F. Research on performance and microstructure of sewage pipe mortar strengthened with different anti-corrosion technologies. IOP Conf. Ser. Mater. Sci. Eng. 2017, 250, 012036. [Google Scholar] [CrossRef]
- Herisson, J.; Guéguen-Minerbe, M.; van Hullebusch, E.D.; Chaussadent, T. Influence of the binder on the behaviour of mortars exposed to H2S in sewer networks: A long-term durability study. Mater. Struct. 2017, 50, 1–18. [Google Scholar] [CrossRef]
- Jiang, G.; Zhou, M.; Chiu, T.H.; Sun, X.; Keller, J.; Bond, P.L. Wastewater-enhanced microbial corrosion of concrete sewers. Environ. Sci. Technol. 2016, 50, 8084–8092. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kappler, U.; Jiang, G.; Bond, P.L. The ecology of acidophilic microorganisms in the corroding concrete sewer environment. Front. Microbiol. 2017, 8, 683. [Google Scholar] [CrossRef]
- O’Connell, M.; McNally, C.; Richardson, M.G. Biochemical attack on concrete in wastewater applications: A state of the art review. Cem. Concr. Compos. 2010, 32, 479–485. [Google Scholar] [CrossRef]
- Jensen, H.S. Hydrogen Sulfide Induced Concrete Corrosion of Sewer Networks; Institut for Kemi, Miljø og Bioteknologi, Aalborg Universitet: Aalborg, Denmark, 2009. [Google Scholar]
- Gutierrez, O.; Sudarjanto, G.; Ren, G.; Ganigué, R.; Jiang, G.; Yuan, Z. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Water Res. 2014, 48, 569–578. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines for Europe; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2000.
- Noeiaghaei, T.; Mukherjee, A.; Dhami, N.; Chae, S.-R. Biogenic deterioration of concrete and its mitigation technologies. Constr. Build. Mater. 2017, 149, 575–586. [Google Scholar] [CrossRef]
- Grengg, C.; Mittermayr, F.; Ukrainczyk, N.; Koraimann, G.; Kienesberger, S.; Dietzel, M. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Res. 2018, 134, 341–352. [Google Scholar] [CrossRef]
- Little, B.; Blackwood, D.; Hinks, J.; Lauro, F.; Marsili, E.; Okamoto, A.; Rice, S.; Wade, S.; Flemming, H.-C. Microbially influenced corrosion—Any progress? Corros. Sci. 2020, 170, 108641. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Z.; Xu, W.; Yang, D.; Xu, Y.; Yang, L.; Ren, J.; Li, Y.; Huang, Y. Research status and development trends in the field of marine environment corrosion: A new perspective. Environ. Sci. Pollut. Res. 2021, 28, 54403–54428. [Google Scholar] [CrossRef] [PubMed]
- Mansfeld, F.; Little, B. A technical review of electrochemical techniques applied to microbiologically influenced corrosion. Corros. Sci. 1991, 32, 247–272. [Google Scholar] [CrossRef]
- Parker, C. The corrosion of concrete 1. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide. Aust. J. Exp. Biol. Med. Sci. 1945, 23. [Google Scholar]
- De Belie, N.; Monteny, J.; Beeldens, A.; Vincke, E.; Van Gemert, D.; Verstraete, W. Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cem. Concr. Res. 2004, 34, 2223–2236. [Google Scholar] [CrossRef]
- Monteny, J.; Vincke, E.; Beeldens, A.; De Belie, N.; Taerwe, L.; Van Gemert, D.; Verstraete, W. Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cem. Concr. Res. 2000, 30, 623–634. [Google Scholar] [CrossRef]
- Aboulela, A.; Lavigne, M.P.; Patapy, C.; Bertron, A. Evaluation of the resistance of CAC and BFSC mortars to biodegradation: Laboratory test approach. MATEC Web Conf. 2018, 199, 02004. [Google Scholar] [CrossRef]
- Roberts, D.; Nica, D.; Zuo, G.; Davis, J. Quantifying microbially induced deterioration of concrete: Initial studies. Int. Biodeterior. Biodegrad. 2002, 49, 227–234. [Google Scholar] [CrossRef]
- Joseph, A.P.; Keller, J.; Bustamante, H.; Bond, P.L. Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration. Water Res. 2012, 46, 4235–4245. [Google Scholar] [CrossRef]
- Vincke, E.; Van Wanseele, E.; Monteny, J.; Beeldens, A.; De Belie, N.; Taerwe, L.; Van Gemert, D.; Verstraete, W. Influence of polymer addition on biogenic sulfuric acid attack of concrete. Int. Biodeterior. Biodegrad. 2002, 49, 283–292. [Google Scholar] [CrossRef]
- Bielefeldt, A.; Gutierrez-Padilla, M.G.D.; Ovtchinnikov, S.; Silverstein, J.; Hernandez, M. Bacterial kinetics of sulfur oxidizing bacteria and their biodeterioration rates of concrete sewer pipe samples. J. Environ. Eng. 2010, 136, 731–738. [Google Scholar] [CrossRef]
- Hazeu, W.; Batenburg-Van der Vegte, W.; Bos, P.; Van der Pas, R.; Kuenen, J. The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch. Microbiol. 1988, 150, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos. Trans. R. Soc. London. B Biol. Sci. 1982, 298, 499–528. [Google Scholar] [PubMed]
- Gutiérrez-Padilla, M.G.D.; Bielefeldt, A.; Ovtchinnikov, S.; Hernandez, M.; Silverstein, J. Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes. Cem. Concr. Res. 2010, 40, 293–301. [Google Scholar] [CrossRef]
- House, M.; Weiss, W. Review of Microbially Induced Corrosion and Comments on Needs Related to Testing Procedures. 2014. Available online: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1056&context=icdcs (accessed on 27 April 2022).
- Zhang, L.; De Schryver, P.; De Gusseme, B.; De Muynck, W.; Boon, N.; Verstraete, W. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Res. 2008, 42, 1–12. [Google Scholar] [CrossRef]
- Wu, L.; Hu, C.; Liu, W.V. The sustainability of concrete in sewer tunnel—A narrative review of acid corrosion in the city of Edmonton, Canada. Sustainability 2018, 10, 517. [Google Scholar] [CrossRef] [Green Version]
- Islander, R.L.; Devinny, J.S.; Mansfeld, F.; Postyn, A.; Shih, H. Microbial ecology of crown corrosion in sewers. J. Environ. Eng. 1991, 117, 751–770. [Google Scholar] [CrossRef]
- Yang, K.-H.; Kwon, S.-J.; Yoon, H.-S. Enhancement of strength and resistance to sulfate attack in bio-coating material through negative pressure method for bacteria immobilization. Appl. Sci. 2021, 11, 9113. [Google Scholar] [CrossRef]
- Attiogbe, E.K.; Rizkalla, S.H. Response of concrete to sulfuric acid attack. ACI Mater. J. 1988, 85, 481–488. [Google Scholar]
- Ghafoori, N.; Mathis, R. Sulfate resistance of concrete pavers. J. Mater. Civ. Eng. 1997, 9, 35–40. [Google Scholar] [CrossRef]
- Wafa, F. Accelerated sulfate attack on concrete in a hot climate. Cem. Concr. Aggreg. 1994, 16, 31–35. [Google Scholar]
- Rombén, L. Aspects on Testing Methods for Acid Attacks on Concrete-Further Experiments; Swedish Cement and Concrete Research Inst.: Borås, Sweden, 1980. [Google Scholar]
- Cohen, M.D.; Mather, B. Sulfate attack on concrete: Research needs. Mater. J. 1991, 88, 62–69. [Google Scholar]
- Chang, H.B.; Choi, Y.C. Accelerated performance evaluation of repair mortars for concrete sewer pipes subjected to sulfuric acid attack. J. Mater. Res. Technol. 2020, 9, 13635–13645. [Google Scholar] [CrossRef]
- Durning, T.A.; Hicks, M.C. Using microsilica to increase concrete’s resistance to aggressive chemicals. Concr. Int. 1991, 13, 42–48. [Google Scholar]
- Fattuhi, N.I.; Hughes, B.P. Ordinary Portland cement mixes with selected admixtures subjected to sulfuric acid attack. Mater. J. 1988, 85, 512–518. [Google Scholar]
- Khan, H.A.; Castel, A.; Khan, M.S.; Mahmood, A.H. Durability of calcium aluminate and sulphate resistant Portland cement based mortars in aggressive sewer environment and sulphuric acid. Cem. Concr. Res. 2019, 124, 105852. [Google Scholar] [CrossRef]
- Wang, T.; Wu, K.; Kan, L.; Wu, M. Current understanding on microbiologically induced corrosion of concrete in sewer structures: A review of the evaluation methods and mitigation measures. Constr. Build. Mater. 2020, 247, 118539. [Google Scholar] [CrossRef]
- Huber, B.; Hilbig, H.; Drewes, J.E.; Müller, E. Evaluation of concrete corrosion after short-and long-term exposure to chemically and microbially generated sulfuric acid. Cem. Concr. Res. 2017, 94, 36–48. [Google Scholar] [CrossRef]
- Monteny, J.; De Belie, N.; Vincke, E.; Verstraete, W.; Taerwe, L. Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cem. Concr. Res. 2001, 31, 1359–1365. [Google Scholar] [CrossRef]
- Scrivener, K.; Belie, N.D. Bacteriogenic sulfuric acid attack of cementitious materials in sewage systems. In Performance of Cement-Based Materials in Aggressive Aqueous Environments; Springer: Berlin/Heidelberg, Germany, 2013; pp. 305–318. [Google Scholar]
- Fattuhi, N.; Hughes, B. The performance of cement paste and concrete subjected to sulphuric acid attack. Cem. Concr. Res. 1988, 18, 545–553. [Google Scholar] [CrossRef]
- Esfandi, E.J.; Sydney, R.; Jones, R.M. Evaluation of Protective Coatings for Concrete. Available online: https://www.powercoatings.co.uk/wp-content/uploads/2017/07/Evaluations-of-Protective-Coatings-for-Concrete-Redner-2004.pdf (accessed on 27 April 2022).
- Vipulanandan, C.; Liu, J. Performance of polyurethane-coated concrete in sewer environment. Cem. Concr. Res. 2005, 35, 1754–1763. [Google Scholar] [CrossRef]
- House, M.; Cheng, L.; Banks, K.; Weiss, J. Concrete Resistance to Sulfuric Acid Immersion: The Influence of Testing Details and Mixture Design on Performance as It Relates to Microbially Induced Corrosion. Adv. Civ. Eng. Mater. 2019, 8, 544–557. [Google Scholar] [CrossRef]
- Mori, T.; Koga, M.; Hikosaka, Y.; Nonaka, T.; Mishina, F.; Sakai, Y.; Koizumi, J. Microbial corrosion of concrete sewer pipes, H2S production from sediments and determination of corrosion rate. Water Sci. Technol. 1991, 23, 1275–1282. [Google Scholar] [CrossRef]
- Mori, T.; Nonaka, T.; Tazaki, K.; Koga, M.; Hikosaka, Y.; Noda, S. Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water Res. 1992, 26, 29–37. [Google Scholar] [CrossRef]
- Ehrich, S.; Helard, L.; Letourneux, R.; Willocq, J.; Bock, E. Biogenic and chemical sulfuric acid corrosion of mortars. J. Mater. Civ. Eng. 1999, 11, 340–344. [Google Scholar] [CrossRef]
- Sand, W. Importance of hydrogen sulfide, thiosulfate, and methylmercaptan for growth of thiobacilli during simulation of concrete corrosion. Appl. Environ. Microbiol. 1987, 53, 1645–1648. [Google Scholar] [CrossRef] [Green Version]
- Sand, W.; Bock, E. Concrete corrosion in the Hamburg sewer system. Environ. Technol. 1984, 5, 517–528. [Google Scholar] [CrossRef]
- Hormann, K.; Hofmann, F.; Schmidt, M. Stability of concrete against biogenic sulfuric acid corrosion, a new method for determination. In Proceedings of the 10th International Congress on the Chemistry of Cement, Gothenburg, Sweden, 2–6 June 1997. [Google Scholar]
- Schmidt, M.; Hormann, K.; Hofmann, F.; Wagner, E. Concrete with greater resistance to acid and to corrosion by biogenous sulfuric acid. Concr. Precast. Plant Technol. 1997, 4, 64–70. [Google Scholar]
- Herisson, J.; van Hullebusch, E.D.; Moletta-Denat, M.; Taquet, P.; Chaussadent, T. Toward an accelerated biodeterioration test to understand the behavior of Portland and calcium aluminate cementitious materials in sewer networks. Int. Biodeterior. Biodegrad. 2013, 84, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Saucier, F.; Herisson, J. Use of Calcium Aluminate Cements in H2S biogenic environments. 2015. [Google Scholar]
- Roghanian, N.; Banthia, N. An Innovative Approach to Simulate Biocorrosion in Concrete Pipes. J. Test. Eval. 2019, 49, 728–739. [Google Scholar] [CrossRef]
- Madraszewski, S.; Dehn, F.; Gerlach, J.; Stephan, D. Experimentally driven evaluation methods of concrete sewers biodeterioration on laboratory-scale: A critical review. Constr. Build. Mater. 2022, 320, 126236. [Google Scholar] [CrossRef]
- Wells, T.; Melchers, R. An observation-based model for corrosion of concrete sewers under aggressive conditions. Cem. Concr. Res. 2014, 61, 1–10. [Google Scholar] [CrossRef]
- Wells, T.; Melchers, R. Modelling concrete deterioration in sewers using theory and field observations. Cem. Concr. Res. 2015, 77, 82–96. [Google Scholar] [CrossRef]
- Khan, H.A.; Castel, A.; Khan, M.S. Corrosion investigation of fly ash based geopolymer mortar in natural sewer environment and sulphuric acid solution. Corros. Sci. 2020, 168, 108586. [Google Scholar] [CrossRef]
- Harbulakova, V.O.; Estokova, A.; Stevulova, N.; Luptáková, A.; Foraiova, K. Current trends in investigation of concrete biodeterioration. Procedia Eng. 2013, 65, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Bassuoni, M.; Nehdi, M. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem. Concr. Res. 2007, 37, 1070–1084. [Google Scholar] [CrossRef]
- Chromková, I.; Čechmánek, R. Influence of biocorrosion on concrete properties. Proc. Key Eng. Mater. 2018, 760, 83–90. [Google Scholar] [CrossRef]
- Berndt, M. Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria. Constr. Build. Mater. 2011, 25, 3893–3902. [Google Scholar] [CrossRef]
- Montes, C.; Allouche, E. Evaluation of the potential of geopolymer mortar in the rehabilitation of buried infrastructure. Struct. Infrastruct. Eng. 2012, 8, 89–98. [Google Scholar] [CrossRef]
- Girardi, F.; Vaona, W.; Di Maggio, R. Resistance of different types of concretes to cyclic sulfuric acid and sodium sulfate attack. Cem. Concr. Compos. 2010, 32, 595–602. [Google Scholar] [CrossRef]
- Ling, A.L.; Robertson, C.E.; Harris, J.K.; Frank, D.N.; Kotter, C.V.; Stevens, M.J.; Pace, N.R.; Hernandez, M.T. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes. PLoS ONE 2015, 10, e0116400. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Performance of Coatings in Wastewater Systems and Verification with Analytical Models; University of Houston: Houston, TX, USA, 2000. [Google Scholar]
- Edge, M.; Allen, N.; Turner, D.; Robinson, J.; Seal, K. The enhanced performance of biocidal additives in paints and coatings. Prog. Org. Coat. 2001, 43, 10–17. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, H.; Shen, W.; Xu, G.; Ma, B.; Ji, X. Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability. Cem. Concr. Compos. 2018, 92, 7–17. [Google Scholar] [CrossRef]
- Peyre Lavigne, M.; Lors, C.; Valix, M.; Herrison, J.; Paul, E.; Bertron, A. Microbial induced concrete deterioration in sewers environment: Mechanisms and microbial populations. RILEM TC 253 MCI Proc. Delft Netherland 2016, 20–36. [Google Scholar]
- Rendell, F.; Jauberthie, R. The deterioration of mortar in sulphate environments. Constr. Build. Mater. 1999, 13, 321–327. [Google Scholar] [CrossRef]
- Herisson, J.; Guéguen-Minerbe, M.; van Hullebusch, E.D.; Chaussadent, T. Behaviour of different cementitious material formulations in sewer networks. Water Sci. Technol. 2014, 69, 1502–1508. [Google Scholar] [CrossRef] [Green Version]
- Habert, G.; Ouellet-Plamondon, C. Recent update on the environmental impact of geopolymers. RILEM Tech. Lett. 2016, 1, 17–23. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Labrincha, J.; Leonelli, C.; Palomo, A.; Chindaprasit, P. Handbook of Alkali-Activated Cements, Mortars and Concretes; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Center for Environmental Research Information (US). Odor and Corrosion Control in Sanitary Sewerage Systems and Treatment Plants: Design Manual; Center for Environmental Research Information, US Environmental Protection: Washington, DC, USA, 1985.
- Almusallam, A.; Khan, F.; Dulaijan, S.; Al-Amoudi, O. Effectiveness of surface coatings in improving concrete durability. Cem. Concr. Compos. 2003, 25, 473–481. [Google Scholar] [CrossRef]
- Boopaphi, R.S.J.; Dasnamoorthy, R.; Chandrasekaran, M.K.; Vishwakarma, V. Study on polymeric coatings on fly ash concrete under seawater. Environ. Sci. Pollut. Res. 2021, 28, 9338–9345. [Google Scholar] [CrossRef]
- Davidson, G.; Trim, M.; Franklin, D.; Myers, J.; Hansen, P. Northern Sewerage Project–Liner Selection in a Corrosive Environment. In Proceedings of the 13th Australian Tunnelling Conference, Melbourne, Australia, 4–7 May 2008; p. 115. [Google Scholar]
- Najder Olliver, A.; Lockhart, T. Innovative one-pass lining solution for Doha’s deep tunnel sewer system. In Proceedings of the World Tunnel Congress 2017—Surface Challenges, Underground Solutions, Bergen, Norway, 9–15 June 2017. [Google Scholar]
- Christodoulou, C.; Goodier, C.I.; Austin, S.A.; Webb, J.; Glass, G.K. Long-term performance of surface impregnation of reinforced concrete structures with silane. Constr. Build. Mater. 2013, 48, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Hou, P.; Xie, N.; Ye, Z.; Cheng, X.; Shah, S.P. Design of SiO2/PMHS hybrid nanocomposite for surface treatment of cement-based materials. Cem. Concr. Compos. 2018, 87, 89–97. [Google Scholar] [CrossRef]
- Haile, T.; Nakhla, G.; Allouche, E. Evaluation of the resistance of mortars coated with silver bearing zeolite to bacterial-induced corrosion. Corros. Sci. 2008, 50, 713–720. [Google Scholar] [CrossRef]
- Kong, L.; Zhao, W.; Xuan, D.; Wang, X.; Liu, Y. Application potential of alkali-activated concrete for antimicrobial induced corrosion: A review. Constr. Build. Mater. 2022, 317, 126169. [Google Scholar] [CrossRef]
- Singh, N. Microbiologically induced deterioration of cement-based materials. In Biodegradation and Biodeterioration at the Nanoscale; Elsevier: Amsterdam, The Netherlands, 2022; pp. 369–388. [Google Scholar]
- Li, X.; Johnson, I.; Mueller, K.; Wilkie, S.; Hanzic, L.; Bond, P.L.; O’Moore, L.; Yuan, Z.; Jiang, G. Corrosion mitigation by nitrite spray on corroded concrete in a real sewer system. Sci. Total Environ. 2022, 806, 151328. [Google Scholar] [CrossRef]
- Fan, W.; Zhuge, Y.; Ma, X.; Chow, C.W.; Gorjian, N.; Li, D. Retrofitting of damaged reinforced concrete pipe with CAC-GGBFS blended strain hardening cementitious composite (SHCC). Thin-Walled Struct. 2022, 176, 109351. [Google Scholar] [CrossRef]
- House, M.W. Using Biological and Physico-Chemical Test Methods to Assess the Role of Concrete Mixture Design in Resistance to Microbially Induced Corrosion; Purdue University: West Lafayette, IN, USA, 2013. [Google Scholar]
- Loganathan, L.N.; Flanagan, R.F.; Tee, T.B. Optimisation of corrosion protection lining (CPL) thickness for concrete sewer tunnels. In Proceedings of the Underground Facilities for Better Environment and Safety: Proceedings of the World Tunnel Congress; Agra, India, 22–24 September 2008, pp. 22–24.
- Liu, J.; Vipulanandan, C. Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack. Tunn. Undergr. Space Technol. 2001, 16, 311–321. [Google Scholar] [CrossRef]
- Marcos-Meson, V.; Fischer, G.; Edvardsen, C.; Skovhus, T.L.; Michel, A. Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack–A literature review. Constr. Build. Mater. 2019, 200, 490–501. [Google Scholar] [CrossRef]
- Lavigne, M.P.; Bertron, A.; Botanch, C.; Auer, L.; Hernandez-Raquet, G.; Cockx, A.; Foussard, J.-N.; Escadeillas, G.; Paul, E. Innovative approach to simulating the biodeterioration of industrial cementitious products in sewer environment. Part II: Validation on CAC and BFSC linings. Cem. Concr. Res. 2016, 79, 409–418. [Google Scholar] [CrossRef]
Sr. No. | Specimen | Concentration of Sulfuric Acid | Duration of Immersion | Reference |
---|---|---|---|---|
1. | Mortar and concrete, 100 mm cubes | 2% (pH-1.78) | 1 to 32 days | [47] |
2. | Concrete, inner tank with diameter 0.9 m and outer tank with diameter of 1.2 m | 10% | 42 to 56 days | [48] |
3. | Concrete, cylinders with 76 mm diameter and 152 mm height | 3% (pH-0.45) | 7 days | [49] |
4. | Concrete, prisms with dimensions 38 × 38 × 200 mm | pH-0.5 to 2 | 7 to 112 days | [50] |
5. | Mortar; 50 mm cubes and 25 × 25 × 250 mm mortar bars | 1.5% (pH~1.1) | 6 months | [42] |
6. | Mortar; cylinder with inner diameter 50 mm, total diameter 100 mm, and height 50 mm | 10% | 7 days | [39] |
No. | Specimens | Exposure | Parameter | Result | Reference |
---|---|---|---|---|---|
1. | Concrete, cylinders with a diameter of 75 mm and height of 150 mm | Sulfuric acid immersion (5%; 12 weeks) | Compressive strength | Decreased up to 34% | [66] |
2. | Mortar, prisms with dimensions 40 × 40 × 160 mm | Sulfuric acid immersion (pH-2; 90 days | Compressive strength | Reduced by 50% | [5] |
3. | Concrete, 150 × 150 × 150 mm cubes | In situ test (6, 12, 18 months) | Compressive strength | Increased by 68% and 17% after 12 and 18months, resp. | [65] |
4. | Concrete, prisms with dimensions 20 × 20 × 100 mm | Biosulfuric acid immersion (9 g/L; 12 months) | Flexural & Compressive strength | Flexural and compressive strength were reduced by an average of 40% & 20% respectively | [67] |
5. | Concrete, prisms with dimensions 38 × 38 × 200 mm | Sulfuric acid immersion (pH-0.5; 7 112 days) | Relative Dynamic Elastic Modulus | Decrease from 100 to 65% average | [50] |
6. | Mortar, arch-shaped | Accelerated biocorrosion chamber (6 months) | Flexural Strength | Decrease by 73% | [1] |
7. | Mortar, 50 mm cubes and 25 × 25 × 250 mm mortar bars | Sulfuric acid immersion (1.5%; pH~1.1; 6 months) | Compressive strength | Decrease of 43.3 to 67.6% | [64] |
Coating Material | MICC Method | Performance Evaluation | Conclusion | Reference |
---|---|---|---|---|
| Sulfuric acid Immersion |
| No failure in either coating after 5 years of exposure | [49] |
| Accelerated biocorrosion chamber |
| Geopolymer coating showed best results for virgin as well as corroded pipes following blended coating. | [1] |
| Sulfuric acid Immersion |
| For moderate environmental conditions, 4.5% resin powder coating without fiber showed the best results, and for severe conditions, a combination of RP and NF was recommended | [39] |
| Sulfuric acid Immersion |
| Coated samples significantly increased compressive strength and impermeability by densifying interfacial transition zone (ITZ) and refining pore structure along with better dimensional stability and less shrinkage compared with reference mortar. | [74] |
| Biogenic Acid Concrete (BAC) setup |
| CAC lining showed no cracking, whereas BFSC showed abundant cracking due to precipitation of secondary ettringite. | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhari, B.; Panda, B.; Šavija, B.; Chandra Paul, S. Microbiologically Induced Concrete Corrosion: A Concise Review of Assessment Methods, Effects, and Corrosion-Resistant Coating Materials. Materials 2022, 15, 4279. https://doi.org/10.3390/ma15124279
Chaudhari B, Panda B, Šavija B, Chandra Paul S. Microbiologically Induced Concrete Corrosion: A Concise Review of Assessment Methods, Effects, and Corrosion-Resistant Coating Materials. Materials. 2022; 15(12):4279. https://doi.org/10.3390/ma15124279
Chicago/Turabian StyleChaudhari, Bhavesh, Biranchi Panda, Branko Šavija, and Suvash Chandra Paul. 2022. "Microbiologically Induced Concrete Corrosion: A Concise Review of Assessment Methods, Effects, and Corrosion-Resistant Coating Materials" Materials 15, no. 12: 4279. https://doi.org/10.3390/ma15124279
APA StyleChaudhari, B., Panda, B., Šavija, B., & Chandra Paul, S. (2022). Microbiologically Induced Concrete Corrosion: A Concise Review of Assessment Methods, Effects, and Corrosion-Resistant Coating Materials. Materials, 15(12), 4279. https://doi.org/10.3390/ma15124279