Crystal Structure Defects in Titanium Nickelide after Abc Pressing at Lowered Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valiev, R.Z.; Zhilyaev, A.P.; Langdon, T. Bulk Nanostructured Materials: Fundamentals and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; p. 440. [Google Scholar] [CrossRef] [Green Version]
- Segal, V.M.; Beyerlein, I.J.; Tome, C.N.; Chuvil’deev, V.N.; Kopylov, V.I. Fundamentals and Engineering of Severe Plastic Deformation; Nova: Amityville, NY, USA, 2010; p. 542. [Google Scholar]
- Mohd Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Lotkov, A.I.; Grishkov, V.N.; Kashin, O.A.; Baturin, A.A.; Zhapova, D.Y.; Timkin, V.N. Mechanisms of microstructure evolution in TiNi-based alloys under warm deformation and its effect on martensite transformations. In Shape Memory Alloys: Properties, Technologies, Opportunities; Resnina, N., Rubanic, V., Eds.; Materials Science Foundations; Trans Tech Publications, Ltd.: Geneva, Switzerland, 2015; Volume 81–82, pp. 245–259. [Google Scholar]
- Shamsolhodaei, A.; Zarei-Hanzaki, A.; Moghaddam, M. Structural and functional properties of a semi equiatomic NiTi shape memory alloy processed by multi-axial forging. Mater. Sci. Eng. A 2017, 700, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.; Song, J.; Huang, C.; Xia, B.; Chen, B.; Sun, X.; Xie, C. Microstructures evolution and phase transformation behaviors of Ni-rich TiNi shape memory alloys after equal channel angular extrusion. J. Alloys Compd. 2011, 509, 3006–3012. [Google Scholar] [CrossRef]
- Shahmir, H.; Nili-Ahmadabadi, M.; Mansouri-Arani, M.; Langdon, T.G. The processing of NiTi shape memory alloys by equal-channel angular pressing at room temperature. Mater. Sci. Eng. A 2013, 576, 178–184. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progr. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Prokoshkin, S.D.; Belousov, M.N.; Abramov, V.Y.; Korotitskii, A.V.; Makushev, S.Y.; Khmelevskaya, I.Y.; Dobatkin, S.V.; Stolyarov, V.V.; Prokof’ev, E.A.; Zharikov, A.I.; et al. Creation of submicrocrystalline structure and improvement of functional properties of shape memory alloys of the Ti-Ni-Fe system with the help of ECAP. Met. Sci. Heat Treat. 2007, 49, 51–56. [Google Scholar] [CrossRef]
- Shahmir, H.; Nili-Ahmadabadi, M.; Langdon, T.G. Shape memory effect of NiTi alloy processed by equal-channel angular pressing followed by post deformation annealing. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012111. [Google Scholar] [CrossRef] [Green Version]
- Churakova, A.; Gunderov, D. Microstructural and Mechanical Stability of a Ti-50.8 at.% Ni Shape Memory Alloy Achieved by Thermal Cycling with a Large Number of Cycles. Metals 2020, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Lotkov, A.I.; Baturin, A.A.; Grishkov, V.N.; Kopylov, V.I.; Timkin, V.N. Influence of equal-channel angular pressing on grain refinement and inelastic properties of TiNi-based alloys. Izvestiya. Vusov. Ferr. Metall. 2014, 57, 50–55. (In Russian) [Google Scholar] [CrossRef]
- Pushin, V.G.; Valiev, R.Z.; Zhu, U.T.; Gunderov, D.V.; Kourov, N.I.; Kuntsevich, T.E.; Uksusnikov, A.N.; Yurchenko, L.I. Effect of Severe Plastic Deformation on the Behavior of Ti-Ni Shape Memory Alloys. Mater. Trans. 2006, 47, 694–697. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Song, J.; Zhang, X.; Xie, C. Phase Transformations and Super-Elasticity of a Ni-rich TiNi Alloy with Ultrafine-Grained Structure. Mater. Sci. Forum 2010, 667–669, 1137–1142. [Google Scholar]
- Zhang, D.; Guo, B.; Tong, Y.; Tian, B.; Li, L.; Zheng, Y.; Gunderov, D.V.; Valiev, R.Z. Effect of annealing temperature on martensitic transformation of Ti49.2Ni50.8 alloy processed by equal channel angular pressing. Trans. Nonferrous Met. Soc. China 2016, 26, 448–455. [Google Scholar] [CrossRef]
- Karaman, I.; Kulkarni, A.V.; Luo, Z.P. Transformation behaviour and unusual twinning in a NiTi shape memory alloy ausformed using equal channel angular extrusion. Phil. Mag. 2005, 85, 1729–1745. [Google Scholar] [CrossRef]
- Khmelevskaya, I.Y.; Prokoshkin, S.D.; Trubitsyna, I.B.; Belousov, M.N.; Dobatkin, S.V.; Tatyanin, E.V.; Korotitskiy, A.V. Structure and properties of Ti-Ni-based alloys after equal-channel angular pressing and high-pressure torsion. Mat. Sci. Eng. A 2008, 481–482, 119–122. [Google Scholar] [CrossRef]
- Prokofyev, E.; Gunderov, D.; Prokoshkin, S.; Valiev, R. Microstructure, mechanical and functional properties of NiTi alloys processed by ECAP technique. In Proceedings of the 8th European Symposium on Martensitic Transformations, ESOMAT 2009, Prague, Czech Republic, 7–11 September 2009; p. 06028. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jiang, S. The Mechanism of Inhomogeneous Grain Refifinement in a NiTiFe Shape Memory Alloy Subjected to Single-Pass Equal-Channel Angular Extrusion. Metals 2017, 7, 400. [Google Scholar] [CrossRef] [Green Version]
- Churakova, A.; Yudahina, A.; Kayumova, E.; Tolstov, N. Mechanical behavior and fractographic analysis of a TiNi alloy with various thermomechanical treatment. In Proceedings of the International Conference on Modern Trends in Manufacturing and Equipment: Mechanical Engineering and Materials Science, ICMTMTE 2019, Sevastopol, Russia, 9–13 September 2019; Volume 298, p. 19. [Google Scholar] [CrossRef] [Green Version]
- Lucas, F.L.C.; Guido, V.; Käfer, K.A.; Bernardi, H.H.; Otubo, J. ECAE Processed NiTi Shape Memory Alloy. Mater. Res. 2014, 17 (Suppl. 1), 186–190. [Google Scholar] [CrossRef] [Green Version]
- Lotkov, A.I.; Grishkov, V.N.; Dudarev, Y.F.; Girsova, N.V.; Tabachenko, A.N. Formation of ultrafine grain structure, martensitic transformations and unelastic properties of titanium nickelide after abc-pressing. Vopr. Materialoved. 2008, 1, 161–165. (In Russian) [Google Scholar]
- Lotkov, A.I.; Grishkov, V.N.; Dudarev, E.F.; Koval, Y.N.; Girsova, N.V.; Kashin, O.A.; Tabachenko, A.N.; Firstov, G.S.; Timkin, V.N.; Zhapova, D.Y. Ultrafine Structure and Martensitic Transformation in Titanium Nickelide after Warm abc Pressing. Inorg. Mater. Appl. Res. 2011, 2, 548–555. [Google Scholar] [CrossRef]
- Lotkov, A.I.; Grishkov, V.N.; Baturin, A.A.; Dudarev, E.F.; Zhapova, D.Y.; Timkin, V.N. The effect of warm deformation by abc-pressing method on mechanical properties of titanium nickelide. Lett. Mater. 2015, 5, 170–174. (In Russian) [Google Scholar] [CrossRef]
- Lotkov, A.; Grishkov, V.; Zhapova, D.; Timkin, V.; Baturin, A.; Kashin, O. Superelasticity and shape memory effect after warm abc-pressing of TiNi-based alloy. Mater. Today Proc. 2017, 4, 4814–4818. [Google Scholar] [CrossRef]
- Kashin, O.; Krukovskii, K.; Lotkov, A.; Grishkov, V. Effect of True Strains in Isothermal abc Pressing on Mechanical Properties of Ti49.8Ni50.2 Alloy. Metals 2020, 10, 1313. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; ShangGuan, Q. Effects of heat treatment and ECAE process on transformation behaviors of TiNi shape memory alloy. Mater. Lett. 2005, 59, 705–709. [Google Scholar] [CrossRef]
- Koike, J.; Parkins, D.M.; Nastasi, M. Crystal-to-amorphous transformation of NiTi induced by cold rolling. J. Mater. Res. 1990, 5, 1414–1418. [Google Scholar] [CrossRef]
- Čížek, J.; Janeček, M.; Vlasák, T.; Smola, B.; Melikhova, O.; Islamgaliev, R.K.; Dobatkin, S.V. The Development of Vacancies during Severe Plastic Deformation. Mater. Trans. 2019, 60, 1533–1542. [Google Scholar] [CrossRef] [Green Version]
- Zehetbauer, M.J.; Steiner, G.; Schafler, G.; Korznikov, A.; Korznikova, E. Deformation induced vacancies with severe plastic deformation: Measurements and modelling. Mater. Sci. Forum 2006, 503–504, 57–65. [Google Scholar]
- Xue, K.-M.; Wang, B.-X.-T.; Yan, S.-L.; Bo, D.-Q.; Li, P. Strain-Induced Dissolution and Precipitation of Secondary Phases and Synergetic Stengthening Mechanisms of Al-Zn-Mg-Cu Alloy during ECAP. Adv. Eng. Mater. 2019, 21, 1801182. [Google Scholar] [CrossRef]
- Straumal, B.B.; Pontikis, V.; Kilmametov, A.R.; Mazilkin, A.A.; Dobatkin, S.V.; Baretzky, B. Competition between precipitation and dissolution in Cu–Ag alloys under high pressure torsion. Acta Mater. 2017, 122, 60–71. [Google Scholar] [CrossRef]
- Farber, V.M. Contribution of diffusion processes to structure formation in intense cold plastic deformation of metals. Metal Sci. Heat Treat. 2002, 44, 317–323. [Google Scholar] [CrossRef]
- Čížek, J.; Melikhova, O.; Barnovská, Z.; Procházka, I.; Islamgaliev, R.K. Vacancy clusters in ultra fine grained metals prepared by severe plastic deformation. J. Phys. Conf. Ser. 2013, 443, 012008. [Google Scholar] [CrossRef]
- Betekhtin, V.I.; Kadomtsev, A.G.; Král, P.; Dvořák, J.; Svoboda, M.; Sax, I.; Sklenička, V. Significance of Microdefects Induced by ECAP in Aluminium, Al 0.2%Sc Alloy and Copper. Mater. Sci. Forum 2008, 567–568, 93–96. [Google Scholar]
- Betekhtin, V.I.; Kadomtsev, A.G.; Narykova, M.V.; Amosova, O.V.; Sklenicka, V. Defect Structure and Mechanical Stability of Microcrystalline Titanium Produced by Equal Channel Angular Pressing. Technol. Phys. Lett. 2017, 43, 61–63. [Google Scholar] [CrossRef]
- Kuznetsov, P.V.; Mironov, Y.P.; Tolmachev, A.I.; Bordulev, Y.S.; Laptev, R.S.; Lider, A.M.; Korznikov, A.V. Positron spectroscopy of defects in submicrocrystalline nickel after low-temperature annealing. Phys. Sol. State 2015, 57, 219–228. [Google Scholar] [CrossRef]
- Reglitz, G.; Oberdorfer, B.; Fleischmann, N.; Kotzurek, J.A.; Divinski, S.V.; Sprengel, W.; Wilde, G.; Würschum, R. Combined volumetric, energetic and microstructural defect analysis of ECAP-processed nickel. Acta Mater. 2016, 103, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R.K. Ultra fine grained Ti prepared by severe plastic deformation. J. Phys. Conf. Ser. 2016, 674, 012007. [Google Scholar] [CrossRef]
- Bartha, K.; Zháňal, P.; Stráský, J.; Čížek, J.; Dopita, M.; Lukáč, F.; Harcuba, P.; Hájek, M.; Polyakova, V.; Semenova, I.; et al. Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure. J. Alloys Compd. 2019, 788, 881–890. [Google Scholar] [CrossRef]
- Domınguez-Reyes, R.; Savoini, B.; Monge, M.A.; Muñoz, Á.; Ballesteros, C. Thermal Stability Study of Vacancy-Type Defects in Commercial Pure Titanium Using Positron Annihilation Spectroscopy. Adv. Eng. Mater. 2017, 19, 1500649. [Google Scholar] [CrossRef]
- Gubicza, J.; Ungar, T. Characterization of defect structures in nanocrystalline materials by X-Ray line profile analysis. Z. Kristallogr. 2007, 222, 567–579. [Google Scholar] [CrossRef] [Green Version]
- Petry, W.; Brüssler, M.; Gröger, V.; Müller, H.G.; Vogl, G. The nature of point defects produced by cold working of metals studied with Mössbauer spectroscopy and perturbed γ-γ angular correlation. Hyperfine Interact. 1983, 15, 371–374. [Google Scholar] [CrossRef]
- Schaefer, H.-E.; Baier, F.; Müller, M.A.; Reichle, K.J.; Reimann, K.; Rempel, A.A.; Sato, K.; Ye, F.; Zhang, X.; Sprengel, W. Vacancies and atomic processes in intermetallics—From crystals to quasicrystals and bulk metallic glasses. Phys. Stat. Sol. B 2011, 48, 2290–2299. [Google Scholar] [CrossRef]
- Würschum, R.; Greiner, W.; Valley, R.Z.; Rapp, M.; Sigle, W.; Schneeweiss, O.; Schaefer, H.-E. Interfacial free volumes in ultra-fine grained metals prepared by severe plastic deformation, by spark erosion, or bycrystallizationof amorphousalloys. Scr. Metal. Mater. 1991, 251, 2451–2456. [Google Scholar] [CrossRef]
- Gammer, C.; Karnthaler, H.P.; Rentenberger, C. Reordering a deformation disordered intermetallic compound by antiphase boundary movement. J. Alloys Compd. 2017, 713, 148–155. [Google Scholar] [CrossRef]
- Collins, G.S.; Sinha, P. Structural, thermal and deformation-induced point defects in PdIn. Hyperfine Interact. 2000, 130, 151–179. [Google Scholar] [CrossRef]
- Lotkov, A.I.; Grishkov, V.N.; Kopylov, V.I.; Baturin, A.A. Possible role of crystal structure defects in grain structure nanofragmentation under severe cold plastic deformation of metals and alloys. Phys. Mesomech. 2007, 10, 179–189. [Google Scholar] [CrossRef]
- Lotkov, A.I.; Baturin, A.A.; Grishkov, V.N.; Kuznetsov, P.V.; Klimenov, V.A.; Panin, V.E. Structural defects and mesorelief of the titanium nickelide surface after severe plastic deformation by an ultrasonic method. Fiz. Mesomekh. 2005, 8, S109–S112. (In Russian) [Google Scholar]
- Syrtanov, M.; Garanin, G.; Kashkarov, E.; Pushilina, N.; Kudiiarov, V.; Murashkina, T. Laboratory X-ray Diffraction Complex for In Situ Investigations of Structural Phase Evolution of Materials under Gaseous Atmosphere. Metals 2020, 10, 447. [Google Scholar] [CrossRef] [Green Version]
- Warren, B.E.; Averbach, B.L. The separation of cold-work distortion and particle size broadening in X-ray patterns. J. Appl. Phys. 1952, 23, 497. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Krill, C.E.; Birringer, R. Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis. Philos. Mag. A 1998, 77, 621–640. [Google Scholar] [CrossRef]
- Williamson, G.K.; Smallman, R.E., III. Dislocation densities in some annealed and cold–worked metals from measurements on the X-ray Debye–Scherrer spectrum. Phil. Mag. 1956, 1, 34–46. [Google Scholar] [CrossRef]
- Smallman, R.E.; Westmacott, K.H. Stacking faults in face-centred cubic metals and alloys. Phil. Mag. 1957, 2, 669–683. [Google Scholar] [CrossRef]
- Bordulev, I.; Laptev, R.; Kudiiarov, V.; Elman, R.; Popov, A.; Kabanov, D.; Ushakov, I.; Lider, A. Positron Annihilation Spectroscopy Complex for Structural Defect Analysis in Metal–Hydrogen Systems. Materials 2022, 15, 1823. [Google Scholar] [CrossRef] [PubMed]
- Giebel, D.; Kansy, J. A New Version of LT Program for Positron Lifetime Spectra Analysis. Mater. Sci. Forum 2010, 666, 138–141. [Google Scholar]
- Giebel, D.; Kansy, J. LT10 Program for Solving Basic Problems Connected with Defect Detection. Phys. Procedia 2012, 35, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Krause-Rehberg, R.; Leipner, H.S. Positron Annihilation in Semiconductors: Defect Studies; Springer: Berlin/Heidelberg, Germany, 1999; p. 383. ISBN 9783540643715. [Google Scholar]
- Petriska, M.; Sabelová, V.; Slugeň, V. CDBTools—Evaluate Positron Annihilation Coincidence Doppler Broadening Spectrum. Defect Diffus. Forum 2017, 373, 71–74. [Google Scholar]
- Kashin, O.; Lotkov, A.I.; Grishkov, V.; Krukovskii, K.; Zhapova, D.; Mironov, Y.; Girsova, N.; Kashina, O.; Barmina, E. Effect of abc Pressing at 573 K on the Microstructure and Martensite Transformation Temperatures in Ti49.8Ni50.2 (at%). Metals 2021, 11, 1145. [Google Scholar] [CrossRef]
- Würschum, R.; Badura-Gergen, K.; Kümmerle, E.A.; Crupp, C.; Schaefer, H.-E. Characterization of radiation-induced lattice vacancies in intermetallic compounds by means of positron-lifetime studies. Phys. Rev. B 1996, 54, 849–856. [Google Scholar] [CrossRef]
- Lotkov, A.; Baturin, A.; Kopylov, V.; Grishkov, V.; Laptev, R. Structural defects in TiNi-based alloys after warm ECAP. Metals 2020, 10, 1154. [Google Scholar] [CrossRef]
- Liu, M.; Diercks, P.; Manzoni, A.; Čizek, J.; Ramamurty, U.; Banhart, J. Positron annihilation investigation of thermal cycling induced martensitic transformation in NiTi shape memory alloy. Acta Mater. 2021, 220, 117298. [Google Scholar] [CrossRef]
- Mizuno, M.; Araki, H.; Shirai, Y. Theoretical calculation of positron lifetimes for defects in solids. Adv. Quantum Chem. 2003, 42, 109–126. [Google Scholar] [CrossRef]
- Čížek, J.; Janeček, M.; Srba, O.; Kužel, R.; Barnovská, Z.; Procházka, I.; Dobatkin, S. Evolution of defects in copper deformed by high-pressure torsion. Acta Mater. 2011, 59, 2322–2329. [Google Scholar] [CrossRef]
- Zehetbauer, M.J.; Kohout, J.; Schafler, E.; Sachslehner, F.; Dubravina, A. Plastic deformation of nickel under hydrostatic pressure. J. Alloys Compd. 2004, 378, 329–334. [Google Scholar] [CrossRef]
- Schafler, E.; Steiner, G.; Korznikova, E.; Kerber, M.; Zehetbauer, M.J. Lattice defect investigation of ECAP-Cu by means of X-ray line profile analysis calorimetry and electrical resistometry. Mater. Sci. Eng. A 2005, 410–411, 169–173. [Google Scholar] [CrossRef]
- Miyazaki, S. Thermal and stress cycling effects and fatigue properties of Ni-Ti alloys. In Engineering Aspects of Shape Memory Alloys, 1st ed.; Duerig, T.W., Melton, K.N., Stöckel, D., Wayman, C.M., Eds.; Butterworth-Heineman: London, UK, 1990; pp. 394–414. [Google Scholar] [CrossRef]
- Norflect, D.M.; Sarosi, P.M.; Manchiraju, S.; Wagner, M.F.-X.; Uchic, M.D.; Anderson, P.M.; Mills, M.J. Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals. Acta Mater. 2009, 57, 3549–3561. [Google Scholar] [CrossRef]
- Simon, T.; Kröger, A.; Somsen, C.; Dlouhy, A.; Eggeler, G. On the multiplication of dislocations during transformations in NiTi shape memory alloys. Acta Mater. 2010, 58, 1850–1860. [Google Scholar] [CrossRef]
- Pelton, A.R.; Huang, G.H.; Moine, P.; Sinclair, R. Effect of thermal cycling on microstructure and properties in Nitinol. Mater. Sci. Eng. A 2012, 532, 130–138. [Google Scholar] [CrossRef]
- Churakova, A.; Gunderov, D. Increase in the dislocation density and yield stress of the Ti50Ni50 alloy caused by thermal cycling. Mater. Today Proc. 2017, 4, 4732–4736. [Google Scholar] [CrossRef]
- Häkkinen, H.; Mäkkinen, S.; Mannienen, M. Edge dislocations in fcc metals: Microscopic calculations of core structure and positron states in Al and Cu. Phys. Rev. B. 1990, 41, 12441–12453. [Google Scholar] [CrossRef]
e | 0 | 1.84 | 3.60 | 5.40 | 7.43 | 9.55 |
---|---|---|---|---|---|---|
, μm | 0.36 | 0.32 | 0.25 | 0.23 | 0.17 | 0.13 |
Samples | τA, ps | τB, ps | τF, ps | IA, % | IB, % |
---|---|---|---|---|---|
Initial | 169 ± 1 | 192 ± 1 | 138 ± 1 | 83.4 | 16.54 |
e = 1.84 | 166 ± 1 | - | 99.9 | - | |
e = 3.60 | 166 ± 1 | - | 99.5 | - | |
e = 5.40 | 166 ± 1 | - | 99.6 | - | |
e = 7.43 | 166 ± 1 | - | 99.7 | - | |
e = 9.55 | 166 ± 1 | - | 99.4 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotkov, A.; Grishkov, V.; Laptev, R.; Mironov, Y.; Zhapova, D.; Girsova, N.; Gusarenko, A.; Barmina, E.; Kashina, O. Crystal Structure Defects in Titanium Nickelide after Abc Pressing at Lowered Temperature. Materials 2022, 15, 4298. https://doi.org/10.3390/ma15124298
Lotkov A, Grishkov V, Laptev R, Mironov Y, Zhapova D, Girsova N, Gusarenko A, Barmina E, Kashina O. Crystal Structure Defects in Titanium Nickelide after Abc Pressing at Lowered Temperature. Materials. 2022; 15(12):4298. https://doi.org/10.3390/ma15124298
Chicago/Turabian StyleLotkov, Aleksandr, Victor Grishkov, Roman Laptev, Yuri Mironov, Dorzhima Zhapova, Natalia Girsova, Angelina Gusarenko, Elena Barmina, and Olga Kashina. 2022. "Crystal Structure Defects in Titanium Nickelide after Abc Pressing at Lowered Temperature" Materials 15, no. 12: 4298. https://doi.org/10.3390/ma15124298
APA StyleLotkov, A., Grishkov, V., Laptev, R., Mironov, Y., Zhapova, D., Girsova, N., Gusarenko, A., Barmina, E., & Kashina, O. (2022). Crystal Structure Defects in Titanium Nickelide after Abc Pressing at Lowered Temperature. Materials, 15(12), 4298. https://doi.org/10.3390/ma15124298