Improvement in Thermal Storage Effectiveness of Paraffin with Addition of Aluminum Oxide Nanoparticles
Abstract
:1. Introduction
2. Model, Geometry, and Validation
3. Experimental Device
4. Results and Discussion
5. Conclusions
- The time required to attain a fully charged condition using nanofluid was reduced by 2.25 times, compared with that needed in the base substance (paraffin). In addition, the time required to attain a fully discharged condition was approximately 1.8 times more rapid. However, compared with the specific heat data of pure paraffin, the specific heat capacity was reduced due to Al2O3 nanoparticle addition.
- A reduction in net sensible heat of about 0.43 MJ and 0.21 MJ was observed with Al2O3 addition during the storage and release processes that occurred during charge and discharge.
- The latent heat stored or released in the nanofluid was reduced by 1.24 MJ to 1.6 MJ, compared with the primary LHS filled with pure paraffin. This is due to the reduction in the heat of fusion during the process of charge or discharge.
- By adding 10% Al2O3 nanoparticles with paraffin, reductions in specific and latent heat capacities of the substance were observed, compared with those of the base fluid. By contrast, increases in the density, viscosity, and thermal conductivity of the substance were detected.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, J.L.; Ming, J.L.; Xiao, D.X.; Dong, L. Optimization and design criterion of the shell-and-tube thermal energy storage with cascaded PCMs under the constraint of outlet threshold temperature. Renew. Energy 2022, 181, 1371–1385. [Google Scholar]
- Qaiser, R.; Khan, M.M.; Khan, L.A.; Irfan, M. Melting performance enhancement of PCM based thermal energy storage system using multiple tubes and modified shell designs. J. Energy Storage 2021, 33, 102161. [Google Scholar] [CrossRef]
- Kalogirou, S. Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters. Sol. Energy 1996, 83, 39–48. [Google Scholar] [CrossRef]
- Bouhal, T.; Agrouaz, Y.; Allouhi, A.; Kousksou, T.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y. Impact of load profile and collector technology on the fractional savings of solar domestic water heaters under various climatic conditions. Int. J. Hydrogen Energy 2017, 42, 13245–13258. [Google Scholar] [CrossRef]
- Keyanpour-Rad, M.; Haghgou, H.R.; Bahar, F.; Afshari, E. Feasibility study of the application of solar heating systems in Iran. Renew. Energy 2000, 20, 333–345. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Flat-plate collector construction and system configuration to optimize the thermosiphonic effect. Renew. Energy 2014, 67, 202–206. [Google Scholar] [CrossRef]
- Kalogirou, S.A.; Papamarcou, C. Modelling of a thermosyphon solar water heating system and simple model validation. Renew. Energy 2000, 21, 471–493. [Google Scholar] [CrossRef]
- Gunjo, D.G.; Mahanta, P.; Robi, P.S. CFD and experimental investigation of flat plate solar water heating system under steady state condition. Renew. Energy 2016, 106, 24–36. [Google Scholar] [CrossRef]
- Gunjo, D.G.; Mahanta, P.; Robi, P.S. Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD. Renew. Energy 2017, 114, 655–669. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Jesumathy, S.P.; Udayakumar, M.; Suresh, S.; Jegadheeswaran, S. An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit. J. Taiwan Inst. Chem. Eng. 2014, 45, 1298–1306. [Google Scholar] [CrossRef]
- Rabha, D.K.; Muthukumar, P. Performance studies on a forced convection solar dryer integrated with a paraffin wax-based latent heat storage system. Sol. Energy 2017, 149, 214–226. [Google Scholar] [CrossRef]
- Agarwal, A.; Sarviya, R.M. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material. Eng. Sci. Technol. Int. J. 2016, 19, 619–631. [Google Scholar] [CrossRef] [Green Version]
- Salunkhe, P.B.; Krishna, D.J. Investigations on latent heat storage materials for solar water and space heating applications. J. Energy Storage 2017, 12, 243–260. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Elkelawy, M.; Din, H.A.E.; Alghrubah, A. Investigation of exergy and yield of a passive solar water desalination system with a parabolic concentrator incorporated with latent heat storage medium. Energy Convers. Manag. 2017, 145, 10–19. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Khalil, A.; Shalaby, S.M.; Zayed, M.E. Improvement of thermal performance of the finned plate solar air heater by using latent heat thermal storage. Appl. Therm. Eng. 2017, 123, 546–553. [Google Scholar] [CrossRef]
- Niyas, H.; Prasad, S.; Muthukumar, P. Performance investigation of a lab-scale heat storage prototype—Numerical results. Energy Convers. Manag. 2017, 135, 188–199. [Google Scholar] [CrossRef]
- Fan, L.; Khodadadi, J.M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2011, 15, 24–46. [Google Scholar] [CrossRef]
- Fan, L.; Khodadadi, J.M. A theoretical and experimental investigation of unidirectional freezing of nanoparticle-enhanced phase change materials. Trans. ASME J. Heat Transf. 2012, 134, 092301. [Google Scholar] [CrossRef]
- Fan, L.; Khodadadi, J.M. An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM). Int. J. Therm. Sci. 2012, 62, 120–126. [Google Scholar] [CrossRef]
- Nabil, M.; Khodadadi, J.M. Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials. Int. J. Heat Mass Transf. 2013, 67, 301–310. [Google Scholar] [CrossRef]
- Khodadadi, J.M.; Hosseinizadeh, S.F. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int. Commun. Heat Mass Transf. 2007, 34, 534–543. [Google Scholar] [CrossRef]
- Zabalegui, A.; Lokapur, D.; Lee, H. Nanofluid PCMs for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance. Int. J. Heat Mass Transf. 2014, 78, 1145–1154. [Google Scholar] [CrossRef]
- Dheep, G.R.; Sreekumar, A. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials. Energy Convers. Manag. 2014, 83, 133–148. [Google Scholar] [CrossRef]
- Thapa, S.; Chukwu, S.; Khaliq, A.; Weiss, L. Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement. Energy Convers. Manag. 2014, 79, 161–170. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 2013, 57, 582–594. [Google Scholar] [CrossRef]
- Owolabi, A.L.; Al-Kayiem, H.H.; Baheta, A.T. Performance investigation on a thermal energy storage integrated solar collector system using nanofluid. Int. J. Energy Res. 2017, 41, 650–657. [Google Scholar] [CrossRef]
- Said, Z.; Saidur, R.; Rahim, N.A. Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. J. Clean. Prod. 2016, 133, 518–530. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Liu, Y.; Wu, F.A. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91, 4568–4572. [Google Scholar] [CrossRef]
- Xie, H.; Wang, J.; Xi, T.; Liu, Y. Thermal conductivity of suspensions containing nanosized. Int. J. Thermophys. 2002, 23, 571–580. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 2000, 21, 58–64. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q.; Hu, W. Aggregation structure and thermal conductivity of nanofluids. AlChE J. 2000, 49, 1038–1043. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Leong, K.C.; Yang, C. Enhanced thermal conductivity of TiO2-water based nanofluids. Int. J. Therm. Sci. 2005, 44, 367–373. [Google Scholar] [CrossRef]
- Vajjha, R.S.; Das, D.K. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf. 2009, 52, 4675–4682. [Google Scholar] [CrossRef]
- Vajjha, R.S.; Das, D.K.; Namburu, P.K. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int. J. Heat Fluid Flow 2010, 31, 613–621. [Google Scholar] [CrossRef]
- COMSOL Multiphysics® v. 4.3; COMSOL AB: Stockholm, Sweden; Available online: www.comsol.com (accessed on 20 December 2021).
- Rieger, H.; Projahn, U.; Beer, H. Analysis of the heat transport mechanisms during melting around a horizontal circular cylinder. Int. J. Heat Mass Transf. 1982, 25, 137–147. [Google Scholar] [CrossRef]
- Bonacina, C.; Comini, G.; Fasano, A.; Primicerio, M. Numerical solution of phase change problems. Int. J. Heat Mass Transf. 1973, 16, 1825–1832. [Google Scholar] [CrossRef]
- Yang, H.; He, Y. Solving heat transfer problems with phase change via smoothed effective heat capacity and element-free Galerkin methods. Int. Commun. Heat Mass Transf. 2010, 37, 385–392. [Google Scholar] [CrossRef]
- Morgan, K.; Lewis, R.W.; Zienkiewicz, O.C. An improved algorithm for heat conduction problems with phase change. Int. J. Numer. Methods Eng. 1978, 12, 1191–1195. [Google Scholar] [CrossRef]
- Schenk, O.; Gärtner, K. Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO. J. Future Gener. Comput. Syst. 2004, 20, 475–487. [Google Scholar] [CrossRef]
- Sasmito, A.P.; Kurnia, J.C.; Mujumdar, A.S. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes. Nanoscale Res. Lett. 2011, 6, 376–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandasamy, R.; Wang, X.Q.; Mujumdar, A.S. Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl. Therm. Eng. 2008, 28, 1047–1057. [Google Scholar] [CrossRef]
- Valan, A.A.; Sasmito, A.P.; Mujumdar, A.S. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system. Therm. Sci. 2013, 17, 419–430. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.; Guo, Z.; Guan, L.; Li, Y. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Appl. Therm. Eng. 2014, 73, 1541–1547. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
CPnp (Al2O3) | 765 | J/kg K |
CPpcm | 2000 | J/kg K |
dnp (Al2O3) | 59 × 10−9 | m |
Knp (Al2O3) | 36 | W/m K |
Kpcm | 0.25 | W/m K |
ρnp (Al2O3) | 3600 | kg/m3 |
ρpcm | 780 | kg/m3 |
Lpcm | 168,000 | J/kg |
Tref | 273.15 | Kelvin (K) |
Tinlet | 343.15 | Kelvin (K) |
Tintitial | 298.15 | Kelvin (K) |
Tm | 321.15 | Kelvin (K) |
dT | 3 | Kelvin(K) |
Ts | Tm − dT | Kelvin (K) |
Tl | Tm + dT | Kelvin (K) |
C1 (Al2O3) | 0.9830 | - |
C2 (Al2O3) | 12.959 | - |
Parameter | Uncertainty |
---|---|
Tube dia. (HTF) | ±0.006 mm |
Temperature | ±0.2 °C |
Solar radiation | ±5 W/m2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunjo, D.G.; Yadav, V.K.; Sinha, D.K.; Elkotb, M.A.; Ahmed, G.M.S.; Hossain, N.; Abdelmohimen, M.A.H. Improvement in Thermal Storage Effectiveness of Paraffin with Addition of Aluminum Oxide Nanoparticles. Materials 2022, 15, 4427. https://doi.org/10.3390/ma15134427
Gunjo DG, Yadav VK, Sinha DK, Elkotb MA, Ahmed GMS, Hossain N, Abdelmohimen MAH. Improvement in Thermal Storage Effectiveness of Paraffin with Addition of Aluminum Oxide Nanoparticles. Materials. 2022; 15(13):4427. https://doi.org/10.3390/ma15134427
Chicago/Turabian StyleGunjo, Dawit Gudeta, Vinod Kumar Yadav, Devendra Kumar Sinha, Mohamed Abdelghany Elkotb, Gulam Mohammed Sayeed Ahmed, Nazia Hossain, and Mostafa A. H. Abdelmohimen. 2022. "Improvement in Thermal Storage Effectiveness of Paraffin with Addition of Aluminum Oxide Nanoparticles" Materials 15, no. 13: 4427. https://doi.org/10.3390/ma15134427
APA StyleGunjo, D. G., Yadav, V. K., Sinha, D. K., Elkotb, M. A., Ahmed, G. M. S., Hossain, N., & Abdelmohimen, M. A. H. (2022). Improvement in Thermal Storage Effectiveness of Paraffin with Addition of Aluminum Oxide Nanoparticles. Materials, 15(13), 4427. https://doi.org/10.3390/ma15134427