Synthesis and Characterization of Porous Forsterite Ceramics with Prospective Tissue Engineering Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Structural and Morphological Characterization
2.3. Biomineralization Capacity and In Vitro Cytotoxicity Assays
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koons, G.L.; Diba, M.; Mikos, A.G. Materials Design for Bone-Tissue Engineering. Nat. Rev. Mater. 2020, 5, 584–603. [Google Scholar] [CrossRef]
- Woolf, A.D.; Akesson, K. Understanding the Burden of Musculoskeletal Conditions. The Burden Is Huge and Not Reflected in National Health Priorities. BMJ Clin. Res. 2001, 322, 1079–1080. [Google Scholar] [CrossRef] [PubMed]
- Woolf, A.D. The Bone and Joint Decade 2000–2010. Ann. Rheum. Dis. 2000, 59, 81–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wimpenny, I. Image Analysis and Quantification of Tissue Scaffolds. In Characterisation and Design of Tissue Scaffolds; Tomlins, P., Ed.; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Xu, T.; Rodriguez-Devora, J.I.; Reyna-Soriano, D.; Mohammod, B.; Zhu, L.; Wang, K.; Yuan, Y. Bioprinting for Constructing Microvascular Systems for Organs. Rapid Prototyp. Biomater. Princ. Appl. 2014, 201–220. [Google Scholar] [CrossRef]
- Abbasi, N.; Hamlet, S.; Love, R.M.; Nguyen, N.-T. Porous Scaffolds for Bone Regeneration. J. Sci. Adv. Mater. Devices 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Velasco, M.A.; Narváez-Tovar, C.A.; Garzón-Alvarado, D.A. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering. Biomed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, S.B.; Keong, T.K.; Cheng, C.H.; Saim, A.B.; Idrus, R.B.H. Tricalcium Phosphate/Hydroxyapatite (TCP-HA) Bone Scaffold as Potential Candidate for the Formation of Tissue Engineered Bone. Indian J. Med. Res. 2013, 137, 1093–1101. [Google Scholar]
- Cohn, M.R.; Unnanuntana, A.; Pannu, T.J.; Warner, S.J.; Lane, J.M. 7.16 Materials in Fracture Fixation. Compr. Biomater. II 2017, 7, 278–297. [Google Scholar] [CrossRef]
- Ladd, A.L.; Wirsing, K. Chapter 24—Bone Graft Substitutes. In Principles and Practice of Wrist Surgery; Elsevier Inc.: Philadelphia, PA, USA, 2010. [Google Scholar]
- Buschmann, J. Biomimetic Phosphate Nanocomposites for Bone-Tissue Regeneration. In Nanocomposites for Musculoskeletal Tissue Regeneration; Liu, H., Ed.; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Yoshikawa, H.; Myoui, A. Bone Tissue Engineering with Porous Hydroxyapatite Ceramics. J. Artif. Organs 2005, 8, 131–136. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, Z.; Li, W.; Fan, Y.; Li, Z.; Wei, J. Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. Crystals 2021, 11, 149. [Google Scholar] [CrossRef]
- Shariful Islam, M.; Abdulla-Al-Mamun, M.; Khan, A.; Todo, M. Excellency of Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering. Biomaterials 2020, 10, 1–22. [Google Scholar] [CrossRef]
- Tereshchenko, V.P.; Kirilova, I.A.; Sadovoy, M.A.; Larionov, P.M. The Materials Used in Bone Tissue Engineering. AIP Conf. Proc. 2015, 1688, 030022. [Google Scholar] [CrossRef]
- Luo, Z.; Deng, Y.; Zhang, R.; Wang, M.; Bai, Y.; Zhao, Q.; Lyu, Y.; Wei, J.; Wei, S. Peptide-Laden Mesoporous Silica Nanoparticles with Promoted Bioactivity and Osteo-Differentiation Ability for Bone Tissue Engineering. Colloids Surf. B 2015, 131, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Shadjou, N.; Hasanzadeh, M. Silica-Based Mesoporous Nanobiomaterials as Promoter of Bone Regeneration Process. J. Biomed. Mater. Res. Part A 2015, 103, 3703–3716. [Google Scholar] [CrossRef]
- Shadjou, N.; Hasanzadeh, M. Bone Tissue Engineering Using Silica-Based Mesoporous Nanobiomaterials: Recent Progress. Mater. Sci. Eng. C. Mater. Biol. Appl. 2015, 55, 401–409. [Google Scholar] [CrossRef]
- Melchels, F.P.W.; Feijen, J.; Grijpma, D.W. A Poly(d,l-Lactide) Resin for the Preparation of Tissue Engineering Scaffolds by Stereolithography. Biomaterials 2009, 30, 3801–3809. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Jang, D.H.; Park, W.H.; Min, B.M. Fabrication and Characterization of 3-Dimensional PLGA Nanofiber/Microfiber Composite Scaffolds. Polymer 2010, 51, 1320–1327. [Google Scholar] [CrossRef]
- Elomaa, L.; Teixeira, S.; Hakala, R.; Korhonen, H.; Grijpma, D.W.; Seppälä, J.V. Preparation of Poly(ε-Caprolactone)-Based Tissue Engineering Scaffolds by Stereolithography. Acta Biomater. 2011, 7, 3850–3856. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Gentile, P.; Chiono, V.; Ciardelli, G. Collagen for Bone Tissue Regeneration. Acta Biomater. 2012, 8, 3191–3200. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, X.; Chen, J.; Lin, K. The Development of Collagen Based Composite Scaffolds for Bone Regeneration. Bioact. Mater. 2018, 3, 129–138. [Google Scholar] [CrossRef]
- Logithkumar, R.; Keshavnarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A Review of Chitosan and Its Derivatives in Bone Tissue Engineering. Carbohydr. Polym. 2016, 151, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.B.; Kim, D.; Kim, D.; Park, H.; Lee, S.H. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Eng. Part B Rev. 2020, 26, 164–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cressey, G.; Howie, R.A. Minerals: Olivines. Encycl. Geol. 2004, 557–561. [Google Scholar] [CrossRef]
- Alderton, D.; Elias. Encyclopedia of Geology, 2nd ed.; Academic Press Oxford: Oxford, UK, 2021; pp. 301–309. ISBN 9780081029091. [Google Scholar]
- Bavya Devi, K.; Nandi, S.K.; Roy, M. Magnesium Silicate Bioceramics for Bone Regeneration: A Review. J. Indian Inst. Sci. 2019, 99, 261–288. [Google Scholar] [CrossRef]
- Kharaziha, M.; Fathi, M.H. Improvement of Mechanical Properties and Biocompatibility of Forsterite Bioceramic Addressed to Bone Tissue Engineering Materials. J. Mech. Behav. Biomed. Mater. 2010, 3, 530–537. [Google Scholar] [CrossRef]
- Naghiu, M.A.; Gorea, M.; Mutch, E.; Kristaly, F.; Tomoaia-Cotisel, M. Forsterite Nanopowder: Structural Characterization and Biocompatibility Evaluation. J. Mater. Sci. Technol. 2013, 29, 628–632. [Google Scholar] [CrossRef]
- Mieszawska, A.J.; Fourligas, N.; Georgakoudi, I.; Ouhib, N.M.; Belton, D.J.; Perry, C.C.; Kaplan, D.L. Osteoinductive Silk-Silica Composite Biomaterials for Bone Regeneration. Biomaterials 2010, 31, 8902–8910. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Liu, K.; Zhang, F.; Wei, W.; Chen, C.; Huang, Q. Microstructure and in Vitro Bioactivity of Silicon-Substituted Hydroxyapatite. Silicon 2017, 9, 543–553. [Google Scholar] [CrossRef]
- Charyeva, O.; Dakischew, O.; Sommer, U.; Heiss, C.; Schnettler, R.; Lips, K.S. Biocompatibility of Magnesium Implants in Primary Human Reaming Debris-Derived Cells Stem Cells in Vitro. J. Orthop. Traumatol. 2016, 17, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, R.; Choudhary, R.; Ponnamma, D.; Sadasivuni, K.K.; Swamiappan, S. Wollastonite/Forsterite Composite Scaffolds Offer Better Surface for Hydroxyapatite Formation. Bull. Mater. Sci. 2019, 42, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Canillas, M.; Pena, P.; De Aza, A.H.; Rodríguez, M.A. Calcium Phosphates for Biomedical Applications. Bol. Soc. Esp. Ceram. Vidr. 2017, 56, 91–112. [Google Scholar] [CrossRef]
- Mirhadi, S.M.; Nourbakhsh, A.A.; Lotfian, N.; Hosseini, B. Strength development, bioactivity and biodegradability of forsterite nanostructure scaffold. Ceram. Int. 2014, 41, 1361–1365. [Google Scholar] [CrossRef]
- Tavangarian, F.; Fahami, A.; Li, G.; Kazemi, M. Structural characterization and strengthening mechanism of forsterite nanostructured scaffolds synthesized by multistep sintering method. J. Mater. Sci. Technol. 2018, 34, 2263–2270. [Google Scholar] [CrossRef]
- Zhu, T.; Zhu, M.; Zhu, Y. Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceram. Int. 2020, 46, 13607–13614. [Google Scholar] [CrossRef]
- Saidi, R.; Fathi, M.; Salimijazi, H. Synthesis and characterization of bioactive glass coated forsterite scaffold for tissue engineering applications. J. Alloys Compd. 2017, 727, 956–962. [Google Scholar] [CrossRef]
- Aghajaniana, A.H.; Bighamb, A.; Khodaeic, M.; Kelishadid, S.H. Porous titanium scaffold coated using forsterite/poly-3-hydroxybutyrate composite for bone tissue engineering. Surf. Coat. Technol. 2019, 378, 124942. [Google Scholar] [CrossRef]
- Naghieh, S.; Foroozmehr, E.; Badrossamay, M.; Kharaziha, M. Combinational processing of 3D printing and electrospinning of hierarchical poly(lactic acid)/gelatin-forsterite scaffolds as a biocomposite: Mechanical and biological assessment. Mater. Des. 2017, 133, 128–135. [Google Scholar] [CrossRef]
- Choudhary, R.; Chatterjee, A.; Venkatraman, S.K.; Koppala, S.; Abraham, J.; Swamiappan, S. Antibacterial Forsterite (Mg2SiO4) Scaffold: A Promising Bioceramic for Load Bearing Applications. Bioact. Mater. 2018, 3, 218–224. [Google Scholar] [CrossRef]
- Ni, S.; Chou, L.; Chang, J. Preparation and Characterization of Forsterite (Mg2SiO4) Bioceramics. Ceram. Int. 2007, 33, 83–88. [Google Scholar] [CrossRef]
- Teimouri, A.; Ghorbanian, L.; Najafi Chermahini, A.; Emadi, R. Fabrication and characterization of silk/forsterite composites for tissue engineering applications. Ceram. Int. 2014, 40, 6405–6411. [Google Scholar] [CrossRef]
- Kharaziha, M.; Fathi, M.H. Synthesis and characterization of bioactive forsterite nanopowder. Ceram. Int. 2009, 35, 2449–2454. [Google Scholar] [CrossRef]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions Able to Reproduce in Vivo Surface-structure Changes in Bioactive Glass-ceramic A-W3. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef] [PubMed]
- Guede, D.; González, P.; Caeiro, J.P. Biomechanics and bone (1): Basic concepts and classical mechanical trials. Rev. Osteoporos. Metab. Miner. 2013, 5, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, R.; Venkatraman, S.K.; Bulygina, I.; Senatov, F.; Kaloshkin, S.; Anisimova, N.; Kiselevskiy, M.; Knyazeva, M.; Kukui, D.; Walther, F.; et al. Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk. Mater. Sci. Eng. C. 2021, 118, 111456. [Google Scholar] [CrossRef]
Sample Name | Sintering Temperature | Porogenic Agent (% wt.) |
---|---|---|
F1 | 1250 °C | 0 |
F2 | 1320 °C | |
F120s | 1250 °C | 20 |
F220s | 1320 °C |
Elements | F1 | F2 | F120s | F220s | ||||
---|---|---|---|---|---|---|---|---|
Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | |
O | 46.48 | 58.35 | 47.5 | 59.06 | 45.83 | 57.51 | 47.47 | 59.04 |
Mg | 33.84 | 27.96 | 34.89 | 28.55 | 35.33 | 29.17 | 34.68 | 28.38 |
Si | 16.87 | 12.07 | 17.07 | 12.09 | 17.93 | 12.82 | 17.38 | 12.31 |
Ca | 1.53 | 0.99 | 0.26 | 0.17 | 0.31 | 0.2 | 0.22 | 0.14 |
P | 1.27 | 0.64 | 0.28 | 0.14 | 0.59 | 0.3 | 0.25 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alecu, A.E.; Balaceanu, G.-C.; Nicoara, A.I.; Neacsu, I.A.; Busuioc, C. Synthesis and Characterization of Porous Forsterite Ceramics with Prospective Tissue Engineering Applications. Materials 2022, 15, 6942. https://doi.org/10.3390/ma15196942
Alecu AE, Balaceanu G-C, Nicoara AI, Neacsu IA, Busuioc C. Synthesis and Characterization of Porous Forsterite Ceramics with Prospective Tissue Engineering Applications. Materials. 2022; 15(19):6942. https://doi.org/10.3390/ma15196942
Chicago/Turabian StyleAlecu, Andrada Elena, Gabriel-Costin Balaceanu, Adrian Ionut Nicoara, Ionela Andreea Neacsu, and Cristina Busuioc. 2022. "Synthesis and Characterization of Porous Forsterite Ceramics with Prospective Tissue Engineering Applications" Materials 15, no. 19: 6942. https://doi.org/10.3390/ma15196942
APA StyleAlecu, A. E., Balaceanu, G. -C., Nicoara, A. I., Neacsu, I. A., & Busuioc, C. (2022). Synthesis and Characterization of Porous Forsterite Ceramics with Prospective Tissue Engineering Applications. Materials, 15(19), 6942. https://doi.org/10.3390/ma15196942