Degradation Law and Service Life Prediction Model of Tunnel Lining Concrete Suffered Combined Effects of Sulfate Attack and Drying–Wetting Cycles
Abstract
:1. Introduction
2. Experimental Program and Evaluation Method
2.1. Materials
2.2. Mix Proportions and Test Design
2.3. Test Procedure
2.4. Deterioration Resistance Evaluation
3. Results and Discussion
3.1. Deterioration Resistance Coefficient of Concrete with Different Mix Proportions
3.2. Effect of Different Influential Factors on Deterioration Resistance Coefficient
3.2.1. Effect of Sulfate Concentration
3.2.2. Effect of Mineral Admixture Content
3.2.3. Effect of Water–Binder Ratio
3.2.4. Effect of Curing Regime
3.3. Service Life Prediction Model under Sulfate Attack and Drying–Wetting Cycles
3.3.1. Establishment of Life Prediction Model Based on Damage Mechanics
3.3.2. Validation and Application of the Proposed Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neville, A. The confused world of sulfate attack on concrete. Cem. Concr. Res. 2004, 34, 1275–1296. [Google Scholar] [CrossRef]
- Yin, Y.Y.; Hu, S.W.; Lian, J.J.; Liu, R. Fracture properties of concrete exposed to different sulfate solutions under drying-wetting cycles. Eng. Fract. Mech. 2022, 266, 108406. [Google Scholar] [CrossRef]
- Brown, P.W.; Badger, S. The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack. Cem. Concr. Res. 2000, 30, 1535–1542. [Google Scholar] [CrossRef]
- Gonzalez, M.A.; Irassar, E.F. Ettringite formation in low C3A Portland cement exposed to sodium sulfate solution. Cem. Concr. Res. 1997, 27, 1061–1071. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Mechanism of sulfate attack: A fresh look: Part 2. Proposed mechanisms. Cem. Concr. Res. 2003, 33, 341–346. [Google Scholar] [CrossRef]
- Soive, A.; Roziere, E.; Loukili, A. Parametrical study of the cementitious materials degradation under external sulfate attack through numerical modeling. Constr. Build. Mater. 2016, 112, 267–275. [Google Scholar] [CrossRef]
- Müllauer, W.; Beddoe, R.E.; Heinz, D. Sulfate attack expansion mechanisms. Cem. Concr. Res. 2013, 52, 208–215. [Google Scholar] [CrossRef]
- Long, G.C.; Xie, Y.J.; Deng, D.H.; Li, X.K. Deterioration of concrete in railway tunnel suffering from sulfate attack. J. Cent. South Univ. Technol. 2011, 18, 881–888. [Google Scholar] [CrossRef]
- Galan, I.; Baldermann, A.; Kusterle, W.; Dietzel, M.; Mittermayr, F. Durability of shotcrete for underground support–Review and update. Constr. Build. Mater. 2019, 202, 465–493. [Google Scholar] [CrossRef]
- Lei, M.F.; Peng, L.M.; Shi, C.H.; Wang, S.Y. Experimental study on the damage mechanism of tunnel structure suffering from sulfate attack. Tunn. Undergr. Space Technol. 2013, 36, 5–13. [Google Scholar] [CrossRef]
- Puppala, A.J.; Saride, S.; Dermatas, D.; Al-Shamrani, M.; Chikyala, V. Forensic investigations to evaluate sulfate-induced heave attack on a tunnel shotcrete liner. J. Mater. Civil. Eng. 2010, 22, 914–922. [Google Scholar] [CrossRef]
- Wang, J.B.; Niu, D.T.; Zhang, Y.L. Mechanical properties, permeability and durability of accelerated shotcrete. Constr. Build. Mater. 2015, 95, 312–328. [Google Scholar] [CrossRef]
- Ma, K.L.; Long, G.C.; Xie, Y.J. Railway tunnel concrete lining damaged by formation of gypsum, thaumasite and sulfate crystallization products in southwest of China. J. Cent. South Univ. Technol. 2012, 19, 2340–2347. [Google Scholar] [CrossRef]
- Sibbick, T.; Fenn, D.; Crammond, N. The occurrence of thaumasite as a product of seawater attack. Cem. Concr. Compos. 2003, 25, 1059–1066. [Google Scholar] [CrossRef]
- Wells, T.; Melchers, R.E. Modelling concrete deterioration in sewers using theory and field observations. Cem. Concr. Res. 2015, 77, 82–96. [Google Scholar] [CrossRef]
- Wang, K.; Guo, J.J.; Yang, L.; Zhang, P.; Xu, H.Y. Multiphysical damage characteristics of concrete exposed to external sulfate attack: Elucidating effect of drying–wetting cycles. Constr. Build. Mater. 2022, 329, 127143. [Google Scholar] [CrossRef]
- Chen, F.; Gao, J.M.; Qi, B.; Shen, D.M.; Li, L.Y. Degradation progress of concrete subject to combined sulfate-chloride attack under drying-wetting cycles and flexural loading. Constr. Build. Mater. 2017, 151, 164–171. [Google Scholar] [CrossRef]
- Niu, D.T.; Wang, Y.D.; Ma, R.; Wang, J.B.; Xu, S.H. Experiment study on the failure mechanism of dry-mix shotcrete under the combined actions of sulfate attack and drying–wetting cycles. Constr. Build. Mater. 2015, 81, 74–80. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, Y.; Tan, Z.C.; Zhang, B.K. Investigating the failure process of concrete under the coupled actions between sulfate attack and drying–wetting cycles by using X-ray CT. Constr. Build. Mater. 2016, 108, 129–138. [Google Scholar] [CrossRef]
- Chen, Y.J.; Gao, J.M.; Tang, L.P.; Li, X.H. Resistance of concrete against combined attack of chloride and sulfate under drying–wetting cycles. Constr. Build. Mater. 2016, 106, 650–658. [Google Scholar] [CrossRef]
- Whittaker, M.; Black, L. Current knowledge of external sulfate attack. Adv. Cem. Res. 2015, 27, 532–545. [Google Scholar] [CrossRef] [Green Version]
- Hossack, A.M.; Thomas, M.D.A. The effect of temperature on the rate of sulfate attack of Portland cement blended mortars in Na2SO4 solution. Cem. Concr. Res. 2015, 73, 136–142. [Google Scholar] [CrossRef]
- Yu, X.T.; Zhu, Y.W.; Liao, Y.D.; Chen, D. Study of the evolution of properties of mortar under sulfate attack at different concentrations. Adv. Cem. Res. 2016, 28, 617–629. [Google Scholar] [CrossRef]
- Ogawa, S.; Nozaki, T.; Yamada, K.; Hirao, H.; Hooton, R.D. Improvement on sulfate resistance of blended cement with high alumina slag. Cem. Concr. Res. 2012, 42, 244–251. [Google Scholar] [CrossRef]
- Bellmann, F.; Möser, B.; Stark, J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen. Cem. Concr. Res. 2006, 36, 358–363. [Google Scholar] [CrossRef]
- Irassar, E.F. Sulfate attack on cementitious materials containing limestone filler-A review. Cem. Concr. Res. 2009, 39, 241–254. [Google Scholar] [CrossRef]
- Nehdi, M.; Hayek, M. Behavior of blended cement mortars exposed to sulfate solutions cycling in relative humidity. Cem. Concr. Res. 2005, 35, 731–742. [Google Scholar] [CrossRef]
- Nehdi, M.L.; Suleiman, A.R.; Soliman, A.M. Investigation of concrete exposed to dual sulfate attack. Cem. Concr. Res. 2014, 64, 42–53. [Google Scholar] [CrossRef]
- Bassuoni, M.T.; Rahman, M.M. Response of concrete to accelerated physical salt attack exposure. Cem. Concr. Res. 2016, 79, 395–408. [Google Scholar] [CrossRef]
- Guo, Z.H.; Hou, P.K.; Xu, Z.H.; Gao, J.M.; Zhao, Y.S. Sulfate attack resistance of tricalcium silicate modified with nano-silica and supplementary cementitious materials. Constr. Build. Mater. 2022, 321, 126332. [Google Scholar] [CrossRef]
- Li, Y.; Wu, B.R.; Wang, R.J. Critical review and gap analysis on the use of high-volume fly ash as a substitute constituent in concrete. Constr. Build. Mater. 2022, 341, 127889. [Google Scholar] [CrossRef]
- Tang, S.W.; Yao, Y.; Andrade, C.; Li, Z.J. Recent durability studies on concrete structure. Cem. Concr. Res. 2015, 78, 143–154. [Google Scholar] [CrossRef]
- Jiang, L.; Niu, D.T. Study of deterioration of concrete exposed to different types of sulfate solutions under drying-wetting cycles. Constr. Build. Mater. 2016, 117, 88–98. [Google Scholar] [CrossRef]
- Aye, T.; Oguchi, C.T. Resistance of plain and blended cement mortars exposed to severe sulfate attacks. Constr. Build. Mater. 2011, 25, 2988–2996. [Google Scholar] [CrossRef]
- Tian, W.; Han, N. Experiment analysis of concrete’s mechanical property deterioration suffered sulfate attack and drying-wetting cycles. Adv. Mater. Sci. Eng. 2017, 2017, 5673985. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.Z.; Zhou, X.M.; Meng, Y.F.; Chen, Z. Durability of concrete containing fly ash and silica fume against combined freezing-thawing and sulfate attack. Constr. Build. Mater. 2017, 147, 398–406. [Google Scholar] [CrossRef]
- Hansen, W. Drying shrinkage mechanisms in Portland cement paste. J. Am. Ceram. Soc. 1987, 70, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Wong, H.S.; Buenfeld, N.R. Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking. Cem. Concr. Res. 2017, 98, 136–154. [Google Scholar] [CrossRef]
- Cheung, M.S.; Kyle, B.R. Service life prediction of concrete structures by reliability analysis. Constr. Build. Mater. 1996, 10, 45–55. [Google Scholar] [CrossRef]
- Lindvall, A. Duracrete—Probabilistic Performance Based Durability Design of Concrete Structures. In 2nd Int. PhD. SYMPOSIUM in Civil Engineering; Budapest, Hungary, 1998; Available online: http://fib.bme.hu/proceedings/lindvall.pdf (accessed on 25 April 2022).
- Ehlen, M.A.; Thomas, M.D.A.; Bentz, E.C. Life-365 service life prediction modelTM version 2.0. Concr. Int. 2009, 31, 41–46. [Google Scholar]
- San, N.R.; Cyr, M.; Escadeillas, G. Performance-based approach to durability of concrete containing flash-calcined metakaolin as cement replacement. Constr. Build. Mater. 2014, 55, 313–322. [Google Scholar]
- Tang, L.P. Chloride transport in concrete-measurement and prediction. Ph.D. Thesis, Chalmers University of Technology, Goteborg, Sweden, 1996. [Google Scholar]
- Safehian, M.; Ramezanianpour, A.A. Assessment of service life models for determination of chloride penetration into silica fume concrete in the severe marine environmental condition. Constr. Build. Mater. 2013, 48, 287–294. [Google Scholar] [CrossRef]
- Li, K.F.; Torrent, R. Analytical and experimental service life assessment of Hong Kong-Zhuhai-Macau link. In Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks; IABMAS 2016, Paper 427; CRC Press: Foz do Iguaçú, Brazil, 2016. [Google Scholar]
- Idiart, A.E.; López, C.M.; Carol, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model. Cem. Concr. Compos. 2011, 33, 411–423. [Google Scholar] [CrossRef]
- Oslakovic, I.S.; Bjegovic, D.; Mikulic, D. Evaluation of service life design models on concrete structures exposed to marine environment. Mater. Struct. 2010, 43, 1397–1412. [Google Scholar] [CrossRef]
- Petcherdchoo, A.; Chindaprasirt, P. Exponentially aging functions coupled with time-dependent chloride transport model for predicting service life of surface-treated concrete in tidal zone. Cem. Concr. Res. 2019, 120, 1–12. [Google Scholar] [CrossRef]
- Yokozeki, K.; Watanabe, K.; Sakata, N.; Otsuki, N. Modeling of leaching from cementitious materials used in underground environment. Appl. Clay Sci. 2004, 26, 293–308. [Google Scholar] [CrossRef]
- Oliveira, I.; Cavalaro, S.H.P.; Aguado, A. New kinetic model to quantify the internal sulfate attack in concrete. Cem. Concr. Res. 2013, 43, 95–104. [Google Scholar] [CrossRef]
- Tang, L.P.; Gulikers, J. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete. Cem. Concr. Res. 2007, 37, 589–595. [Google Scholar]
- Yang, H.; Jiang, L.H.; Zhang, Y.; Pu, Q.; Xu, Y. Predicting the calcium leaching behavior of cement pastes in aggressive environments. Constr. Build. Mater. 2012, 29, 88–96. [Google Scholar] [CrossRef]
- Marchand, J.; Samson, E. Predicting the service-life of concrete structures–Limitations of simplified models. Cem. Concr. Compos. 2009, 31, 515–521. [Google Scholar] [CrossRef]
- Pack, S.W.; Jung, M.S.; Song, H.W.; Kim, S.H.; Ann, K.Y. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment. Cem. Concr. Res. 2010, 40, 302–312. [Google Scholar] [CrossRef]
- Ahmad, S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction—A review. Cem. Concr. Compos. 2003, 25, 459–471. [Google Scholar] [CrossRef]
- Alexander, M.; Thomas, M. Service life prediction and performance testing—Current developments and practical applications. Cem. Concr. Res. 2015, 78, 155–164. [Google Scholar] [CrossRef]
- Song, H.W.; Shim, H.B.; Petcherdchoo, A.; Park, S.K. Service life prediction of repaired concrete structures under chloride environment using finite difference method. Cem. Concr. Compos. 2009, 31, 120–127. [Google Scholar] [CrossRef]
- GB 175-2007; Common Portland Cement. Chinese Standard Press: Beijing, China, 2007.
- GB/T 50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. China Architecture and Building Press: Beijing, China, 2009.
- GB 50081-2002; Standard for Method of Mechanical Properties on Ordinary Concrete. China Architecture and Building Press: Beijing, China, 2002.
- Elahi, M.M.A.; Shearer, C.R.; Reza, A.N.R.; Saha, A.K.; Khan, M.N.N.; Hossain, M.M.; Sarker, P.K. Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review. Constr. Build. Mater. 2021, 281, 122628. [Google Scholar] [CrossRef]
- Lee, S.T.; Moon, H.Y.; Swamy, R.N. Sulfate attack and role of silica fume in resisting strength loss. Cem. Concr. Compos. 2005, 27, 65–76. [Google Scholar] [CrossRef]
- Yu, X.T.; Chen, D.; Feng, J.R.; Zhang, Y. Behavior of mortar exposed to different exposure conditions of sulfate attack. Ocean Eng. 2018, 157, 1–12. [Google Scholar] [CrossRef]
- Sahmaran, M.; Kasap, O.; Duru, K.; Yaman, I.O. Effects of mix composition and water–cement ratio on the sulfate resistance of blended cements. Cem. Concr. Compos. 2007, 29, 159–167. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jin, X.G.; Luo, W. Long-term behaviors of concrete under low-concentration sulfate attack subjected to natural variation of environmental climate conditions. Cem. Concr. Res. 2019, 116, 217–230. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, Q.Z.; Zhuang, H.Y.; Li, Z.Y.; Chen, G.X. A fully coupled flow deformation model for seismic site response analyses of liquefiable marine sediments. Ocean. Eng. 2022, 251, 111144. [Google Scholar] [CrossRef]
- Xie, F.; Li, J.P.; Li, L.; Zhao, G.W.; Yao, M.B. Numerical solution and damage evaluation for cast-in-situ piles exposed to external sulfate attack. Constr. Build. Mater. 2019, 214, 269–279. [Google Scholar] [CrossRef]
- Bonavetti, V.; Donza, H.; Rahhal, V.; Irassar, E. Influence of initial curing on the properties of concrete containing limestone blended cement. Cem. Concr. Res. 2000, 30, 703–708. [Google Scholar] [CrossRef]
- Lemaitre, J.; Desmorat, R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Schön, J.H. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Glasser, F.P.; Marchand, J.; Samson, E. Durability of concrete—Degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 2008, 38, 226–246. [Google Scholar] [CrossRef]
- Schneider, U.; Chen, S.W. Deterioration of high-performance concrete subjected to attack by the combination of ammonium nitrate solution and flexure stress. Cem. Concr. Res. 2005, 35, 1705–1713. [Google Scholar] [CrossRef]
- Gesoğlu, M.; Güneyisi, E.; Özbay, E. Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Constr. Build. Mater. 2009, 23, 1847–1854. [Google Scholar] [CrossRef]
Water Requirement of Normal Consistency (%) | Soundness | Loss on Ignition (%) | 45 μm Sieving Residue (%) | Specific Surface Area (m2/kg) | |||
---|---|---|---|---|---|---|---|
28.4 | Qualified | 3.13 | 0.8 | 380 | |||
Setting time (min) | Flexural strength (MPa) | Compressive strength (MPa) | |||||
Initial set | Final set | 1 d | 3 d | 28 d | 1 d | 3 d | 28 d |
155 | 215 | 2.2 | 5.0 | 9.5 | 7.9 | 30.8 | 45.6 |
Mineral Admixtures | Water Requirement Ratio (%) | Loss on Ignition (%) | Moisture Content (%) | 45 μm Sieving Residue (%) | Activity Index (%) | Specific Surface Area (m2/kg) | |
---|---|---|---|---|---|---|---|
7 d | 28 d | ||||||
FA | 0.98 | 1.57 | 0.6 | 1.2 | 65 | 87 | 650 |
GGBS | 0.95 | 0.61 | 0.5 | 2.0 | 79 | 111 | 450 |
SF | - | 1.66 | 0.9 | 1.0 | - | 103 | 18,000 |
Materials | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | f-CaO |
---|---|---|---|---|---|---|---|---|---|
Cement | 21.09 | 62.50 | 4.34 | 2.81 | 1.81 | 2.87 | 0.15 | 0.62 | 0.67 |
FA | 58.58 | 1.73 | 22.97 | 4.69 | 4.72 | 0.42 | 1.54 | 2.52 | 0.48 |
GGBS | 36.61 | 39.47 | 11.79 | 1.23 | 8.94 | 0.23 | - | - | - |
SF | 91.81 | 0.09 | 1.05 | 1.17 | 1.24 | 0.30 | 0.22 | 0.93 | - |
Apparent Density (kg/m3) | Bulk Density (kg/m3) | Crushing Value Index (%) | Maximum Size (mm) | Fineness Modulus | Porosity (%) | Dust Content (%) | |
---|---|---|---|---|---|---|---|
Fine aggregates | 2590 | 1420 | - | 4.75 | 2.8 | 40.5 | 0.75 |
Coarse aggregates | 2760 | 1450 | 8.8 | 25 | - | 42 | 0.1 |
Mix a | Cement (kg/m3) | Mineral Admixture Content (%) | Coarse Aggregates (kg/m3) | Fine Aggregates (kg/m3) | Water (kg/m3) | Compressive Strength (MPa) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
FA | GGBS | SF | 3 d | 7 d | 28 d | 56 d | |||||
OPC | 395 | - | - | - | 1032 | 811 | 162 | 30.8 | 45.6 | 50.5 | 53.0 |
F20 | 316 | 79 | - | - | 1032 | 811 | 162 | 28.2 | 38.6 | 53.8 | 57.2 |
G30 | 276.5 | - | 118.5 | - | 1032 | 811 | 162 | 26.2 | 43.4 | 54.9 | 58.2 |
S5 | 375.25 | - | - | 19.75 | 1032 | 811 | 162 | 28.8 | 38.2 | 52.7 | 57.4 |
F10G40 | 197.5 | 39.5 | 158 | - | 1032 | 811 | 162 | 29.2 | 44.7 | 54.2 | 60.3 |
F20G30 | 197.5 | 79 | 118.5 | - | 1032 | 811 | 162 | 27.0 | 40.7 | 59.1 | 63.4 |
F20G30S5 | 177.75 | 79 | 118.5 | 19.75 | 1032 | 811 | 162 | 30.2 | 44.9 | 58.4 | 62.6 |
Influential Factors | Description | Values or Conditions |
---|---|---|
sulfate concentration (%) | - | 0, 2.5, 5, 10, 15 |
mineral addition content (%) | FA | 0, 15, 20, 25, 30, 35 |
GGBS | 0, 20, 25, 30, 35, 40 | |
SF | 0, 3, 5, 8, 10, 12 | |
w/b ratio a | - | 0.34, 0.38, 0.41, 0.45, 0.5 |
curing regime | standard curing (SC) | 20 ± 1 °C and RH ≥ 95% |
fog curing (FC) | 20 ± 5 °C and RH ≥ 90% | |
water curing (WC) | 22 ± 5 °C | |
same condition curing (SCC) | 22 ± 5 °C and RH ≥ 65% |
w/b (%) | Cement (kg/m3) | Fine Aggregates (kg/m3) | Coarse Aggregates (kg/m3) | Superplasticizer (%) |
---|---|---|---|---|
0.34 | 470 | 710 | 1110 | 1.15 |
0.38 | 420 | 738 | 1107 | 1.0 |
0.41 | 395 | 774 | 1069 | 0.95 |
0.45 | 350 | 803 | 1064 | 1.0 |
0.50 | 310 | 829 | 1056 | 1.1 |
Mix Proportions | Fitting Functions | R-Square |
---|---|---|
OPC | 0.935 | |
F20 | 0.952 | |
G30 | 0.975 | |
S5 | 0.948 | |
F10G40 | 0.956 | |
F20G30 | 0.976 | |
F20G30S5 | 0.969 |
Mix Proportion | Regression Constants of | M a | Lifetime (Year) | ||||
---|---|---|---|---|---|---|---|
A | B | Tested b | Predicted c | Error d (%) | |||
OPC | 1.1572 × 10−3 | 2.0402 × 10−5 | 0.632 | 0.5 | 100 | 102 | 2.0 |
F20 | −1.1537 × 10−3 | 2.8055 × 10−5 | 0.632 | 0.5 | 113 | 124 | 9.8 |
G30 | −5.5630 × 10−4 | 2.9112 × 10−5 | 0.632 | 0.5 | 104 | 115 | 11.0 |
S5 | −2.0192 × 10−3 | 3.0053 × 10−5 | 0.632 | 0.5 | 120 | 107 | −10.7 |
F10G40 | −8.8134 × 10−4 | 1.8192 × 10−5 | 0.632 | 0.5 | 140 | 127 | −9.0 |
F20G30 | −1.7376 × 10−4 | 1.1776 × 10−5 | 0.632 | 0.5 | 158 | 134 | −15.5 |
F20G30S5 | −6.8270 × 10−4 | 1.4922 × 10−5 | 0.632 | 0.5 | 152 | 135 | −11.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, F.; Wang, H.; Wang, L.; Zhao, K.; Zhang, J. Degradation Law and Service Life Prediction Model of Tunnel Lining Concrete Suffered Combined Effects of Sulfate Attack and Drying–Wetting Cycles. Materials 2022, 15, 4435. https://doi.org/10.3390/ma15134435
Lu F, Wang H, Wang L, Zhao K, Zhang J. Degradation Law and Service Life Prediction Model of Tunnel Lining Concrete Suffered Combined Effects of Sulfate Attack and Drying–Wetting Cycles. Materials. 2022; 15(13):4435. https://doi.org/10.3390/ma15134435
Chicago/Turabian StyleLu, Feng, Haiyan Wang, Lichuan Wang, Kai Zhao, and Junru Zhang. 2022. "Degradation Law and Service Life Prediction Model of Tunnel Lining Concrete Suffered Combined Effects of Sulfate Attack and Drying–Wetting Cycles" Materials 15, no. 13: 4435. https://doi.org/10.3390/ma15134435
APA StyleLu, F., Wang, H., Wang, L., Zhao, K., & Zhang, J. (2022). Degradation Law and Service Life Prediction Model of Tunnel Lining Concrete Suffered Combined Effects of Sulfate Attack and Drying–Wetting Cycles. Materials, 15(13), 4435. https://doi.org/10.3390/ma15134435