A Review on Geopolymer Technology for Lunar Base Construction
Abstract
:1. Introduction
2. Applicability of Geopolymers as a Lunar Base Construction Material
2.1. Source Materials for Geopolymers
2.2. Advantages of Geopolymers as Lunar Base Construction Materials
3. Utilization of Lunar Regolith as a Raw Material for Geopolymers
3.1. Composition of Lunar Regolith and Its Simulants
3.2. Recycling of the Mixing Water
4. High Potential of Lunar Regolith Simulant-Based Geopolymers
4.1. Selection of Alkali Activator
4.2. Compressive Strength and Durability of Lunar Regolith Simulant-Based Geopolymers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, J.N.; Katzarova, M.; Wagner, N.J. Comparison of lunar and Martian regolith simulant-based geopolymer cements formed by alkali-activation for in-situ resource utilization. Adv. Space Res. 2022, 69, 761–777. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, S.; Li, F. Preparation of geopolymer based on lunar regolith simulant at in-situ lunar temperature and its durability under lunar high and cryogenic temperature. Constr. Build. Mater. 2022, 318, 126033. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, X.; Lu, C.; Li, F. Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chin. J. Aeronaut. 2022, 35, 144–159. [Google Scholar] [CrossRef]
- Montes, C.; Broussard, K.; Gongre, M.; Simicevic, N.; Mejia, J.; Tham, J.; Allouche, E.; Davis, G. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Adv. Space Res. 2015, 56, 1212–1221. [Google Scholar] [CrossRef]
- Wang, K.; Tang, Q.; Cui, X.; He, Y.; Liu, L. Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction. Sci. Rep. 2016, 6, 29659. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.; Montes, C.; Eklund, S. Preparation of lunar regolith based geopolymer cement under heat and vacuum. Adv. Space Res. 2017, 59, 1872–1885. [Google Scholar] [CrossRef]
- Papike, J.J.; Ryder, G.; Shearer, C.K. Lunar Materials. In Planetary Materials, Reviews in Mineralogy; Pakike, J.J., Ed.; Mineralogical Society of America: Washington, DC, USA, 1998; Volume 36, pp. 5.1–5.23. [Google Scholar]
- Isachenkov, M.; Chugunov, S.; Akhatov, I.; Shishkovsky, I. Regolith-based additive manufacturing for sustainable development of lunar infrastructure—An overview. Acta Astronaut. 2021, 180, 650–678. [Google Scholar] [CrossRef]
- Kriven, W.M. Inorganic polysialates or ‘geopolymers’. Am. Ceram. Soc. Bull. 2010, 89, 31–34. [Google Scholar]
- Rowles, M.R.; Hanna, J.V.; Pike, K.J.; Smith, M.E.; O’Connor, B.H. 29Si, 27Al, 1H and 23Na MAS NMR study of the bonding character in aluminosilicate inorganic polymers. Appl. Magn. Reson. 2007, 32, 663–689. [Google Scholar] [CrossRef]
- Williams, R.; Hart, R.; van Riessen, A. Quantification of the extent of reaction of metakaolin based geopolymers using XRD, SEM and EDS. J. Am. Ceram. Soc. 2011, 94, 2663–2670. [Google Scholar] [CrossRef]
- Williams, R.; van Riessen, A. Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD. Fuel 2010, 89, 3683–3692. [Google Scholar] [CrossRef]
- Rickard, D.A.W.; Williams, R.; Temuujin, J.; van Riessen, A. Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Mater. Sci. Eng. A 2011, 528, 3390–3397. [Google Scholar] [CrossRef]
- Van Riessen, A.; Chen-Tan, N. Beneficiation of Collie fly ash for synthesis of geopolymer. Part 2—Geopolymers. Fuel 2013, 106, 569–575. [Google Scholar] [CrossRef]
- Lee, S.; van Riessen, A.; Chon, C.-M. Benefits of sealed-curing on compressive strength of fly ash-based geopolymers. Materials 2016, 9, 598. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, R. JSC-1A Lunar regolith simulant production summary and lessons learned. In Proceedings of the Lunar Regolith Simulant Workshop, Huntsville, AL, USA, 17–20 March 2009. [Google Scholar]
- Stoeser, D.B.; Wilson, S.; Rickman, D.L. Preliminary Geological Findings on the BP-1 Simulant; NASA Marshall Space Flight Center: Huntsville, AL, USA, 2010; pp. 1–24.4.
- Xiong, G.; Guo, X.; Yuan, S.; Xia, M.; Wang, Z. The mechanical and structural properties of lunar regolith simulant based geopolymer under extreme temperature environment on the moon through experimental and simulation methods. Constr. Build. Mater. 2022, 325, 126679. [Google Scholar] [CrossRef]
- Zhou, S.; Lu, C.; Zhu, X.; Li, F. Preparation and characterization of high-strength geopolymer based on BH-1 lunar soild simulant with low alkali content. Engineering 2021, 7, 1631–1645. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, Z.; Zhang, R.; Zhu, X.; Li, F. Preparation and evaluation of geopolymer based on BH-2 lunar regolith simulant under lunar surface temperature and vacuum condition. Acta Astronaut. 2021, 189, 90–98. [Google Scholar] [CrossRef]
- Pilehvar, S.; Arnhof, M.; Pamies, R.; Valentini, L.; Kjøniksen, A.-L. Utilization of urea as an accessible superplasticizer on the moon for lunar geopolymer mixtures. J. Clean. Prod. 2020, 247, 119177. [Google Scholar] [CrossRef]
- Lilliu, G.; van Mier, J.G.M. 3D lattice type fracture model for concrete. Eng. Fract. Mech. 2003, 70, 927–941. [Google Scholar] [CrossRef]
- Luo, Z.; Li, W.; Wang, K.; Castel, A.; Shah, S. Comparison on the properties of ITZ in fly ash-based geopolymer and Portland cement concretes with equivalent flowability. Constr. Build. Mater. 2021, 143, 106392. [Google Scholar] [CrossRef]
- Gourley, J.T. Geopolymers in Australia. J. Aust. Ceram. Soc. 2014, 50, 102–110. [Google Scholar]
- Yang, M.; Paudel, S.; Asa, E. Comparison of pore structure in alkali activated fly ash geopolymer and ordinary concrete due to alkali-silica reaction using micro-computed tomography. Constr. Buildi. Mater. 2020, 236, 117524. [Google Scholar] [CrossRef]
- An, E.-M.; Cho, Y.-H.; Chon, C.-M.; Lee, D.-G.; Lee, S. Synthesizing and assessing fire-resistant geopolymer from rejected fly ash. J. Korean Ceram. Soc. 2013, 52, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Provis, J.L. Chapter 4 & 9 Activating solution chemistry for geopolymers. In Geopolymers: Structure, Processing and Industrial Applications; Provis, J.L., van Deventer, J.S.J., Eds.; Woodhead Publishing Limited: Cambridge, UK; Oxford, UK, 2009; pp. 50–71. [Google Scholar]
- Nematollahi, B.; Sanjayan, J. Efficacy of available superplasticizers on geopolymers. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 1278–1282. [Google Scholar] [CrossRef]
- Carabba, L.; Manzi, S.; Bignozzi, M.C. Superplasticizer addition to carbon fly ash geopolymers activated at room temperature. Materials 2016, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, B.; Seo, J.; Cho, S. Beneficial use of MIBC in metakaolin-based geopolymers to improve flowability and compressive strength. Materials 2020, 13, 3663. [Google Scholar] [CrossRef]
- Agosto, W.N. Electrostatic concentration of lunar soil minerals. In Lunar Bases and Space Activities of the 21st Century; Mendell, W.W., Ed.; Lunar and Planetary Institute: Houston, TX, USA, 1985; pp. 453–464. [Google Scholar]
- Papike, J.J.; Simon, S.B.; Laul, J.C. The lunar regolith: Chemistry, mineralogy and petrology. Rev. Geophys. 1982, 20, 761–826. [Google Scholar] [CrossRef]
- Smith, J.V.; Steele, I.M. Lunar mineralogy: A heavenly detective story. Part II. Am. Miner. 1976, 61, 1059–1116. [Google Scholar]
- Collins, P.J.; Edmunson, J.; Fiske, M.; Radlinska, A. Materials characterization of various lunar regolith simulants for use in geopolymer lunar concrete. Adv. Space Res. 2022, 69, 3941–3951. [Google Scholar] [CrossRef]
- Noble, S. The lunar regolith. In Proceedings of the Lunar Regolith Simulant Workshop, Huntsville, AL, USA, 17–20 March 2009. [Google Scholar]
- Honniball, C.I.; Lucey, P.G.; Shenoy, S.; Orlando, T.M.;; Hibbitts, C.A.; Hurley, D.M.; Farrell, W.M. Molecular water detected on the sunlit Moon by SOFIA. Nat. Astron. 2020, 5, 121–127. [Google Scholar] [CrossRef]
- Barbosa, V.F.F.; MacKenzie, K.J.D.; Thaumaturgo, C. Synthesis and characterization of materials based on inorganic polymers of alumina and silica: Polysialate polymers. Int. J. Inorg. Mater. 2000, 2, 309–317. [Google Scholar] [CrossRef]
- Alventosa, K.M.; White, C.E. The effects of calcium hydroxide and activator chemistry on alkali-activated metakaolin pastes. Cem. Concr. Res. 2021, 145, 106453. [Google Scholar] [CrossRef]
- Sankar, K.; Sutrisno, A.; Kriven, W.M. Slag-fly ash and slag-metakaolin binders: Part II—Properties of precursors and NMR study of poorly ordered phases. J. Am. Ceram. Soc. 2019, 102, 3204–3227. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.; Chon, C.-M.; Cho, S. Setting behavior and phase evolution on heat treatment of metakaolin-based geopolymers containing calcium hydroxide. Materials 2022, 15, 194. [Google Scholar] [CrossRef]
- Xu, H.; van Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Gurvich, L.V.; Bergman, G.A.; Gorokhov, L.N.; Ioris, V.S.; Leonidov, V.Y.; Yungman, V.S. Thermodynamic properties of alkali metal hydroxides. Part 1. lithium and sodium hydroxides. J. Phys. Chem. Ref. Data 1996, 25, 1211–1276. [Google Scholar] [CrossRef] [Green Version]
- Duxson, P.; Lukey, G.C.; van Deventer, J.S.J. The thermal evolution of metakaolin geopolymers: Part 2—Phase stability and structural development. J. Non-Cryst. 2007, 353, 2186–2200. [Google Scholar] [CrossRef]
- Gurvich, L.V.; Bergman, G.A.; Gorokhov, L.N.; Ioris, V.S.; Leonidov, V.Y.; Yungman, V.S. Thermodynamic properties of alkali metal hydroxides. Part II. potassium, rubidium, and desium hydroxides. J. Phys. Chem. Ref. Data 1997, 26, 1031–1110. [Google Scholar] [CrossRef] [Green Version]
- Hajimohammadi, A.; van Deventer, J.S.J. Characterisation of one-part geopolymer binders made from fly ash. Waste Biomass Valorization 2017, 8, 225–233. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Ferrone, K.L.; Taylor, A.B.; Helvajian, H. In situ resource utilization of structural material from planetary regolith. Adv. Space Res. 2022, 69, 2268–2282. [Google Scholar] [CrossRef]
- Momi, J.; Lewis, T.; Alberini, F.; Meyer, M.E.; Alexiadis, A. Study of the rheology of lunar regolith simulant and water slurries for geopolymer applications on the Moon. Adv. Space Res. 2021, 68, 4496–4504. [Google Scholar] [CrossRef]
- Alexiadis, A.; Alberini, F.; Meyer, M.E. Geopolymers from lunar and Martian soil simulants. Adv. Space Res. 2017, 59, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Castillo, H.; Collado, H.; Droguett, T.; Sánchez, S.; Vesely, M.; Garrido, P.; Palma, S. Factors affecting the compressive strength of geopolymers: A review. Materials 2021, 11, 1317. [Google Scholar] [CrossRef]
- Pilehvar, S.; Arnhof, M.; Erichsen, A.; Valentini, L.; Kjøniksen, A.-L. Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers. J. Mater. Res. Technol. 2021, 11, 1506–1516. [Google Scholar] [CrossRef]
- Casanova, I. Feasibility study and applications of sulfur concrete for lunar base development: A preliminary study. In Proceedings of the 28th Annual Lunar and Planetary Science Conference, Houston, TX, USA, 17–21 March 1997; p. 209. [Google Scholar]
- Duxson, P.; Fernandez-Jimenez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
Simulant | Chemistry (wt.%) | Source | Note | Ref. | ||
---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | ||||
JSC-1A | 46.67 | 15.79 | 9.90 | Basalt cinders from Merriam Crater | Similar to low-titanium lunar mare terrain, formulated to be close to JSC-1 | [6,16] |
BP-1 | 47.2 | 16.7 | 9.2 | San Francisco Volcanic Field | Lack of chemical similarity to Apollo samples | [17] |
LHS-1 | 48.1 | 25.8 | 18.4 | Not sourced from any particular terrestrial source | High similarity to the highlands soil in terms of chemical composition and PSD | [1] |
GVS | 43.3 | 16.5 | 8.8 | Volcanic scoria cones | Same origin of CAS-1 and NEU-1 | [3] |
LN | 44.83 | 14.18 | 8.93 | Volcanic scoria cones | Similar mineralogy to Apollo samples | [18] |
BH-1 | 43.3 | 16.5 | 8.8 | Volcanic scoria cones | Mineralogical and chemical analog to Apollo 16 samples | [19] |
BH-2 | 43.3 | 16.5 | 8.8 | Volcanic scoria cones | Upgraded to have the same gradation to Apollo 17 samples | [20] |
DNA-1 | 47.79 | 19.16 | 8.28 | Dini Engineering srl for Monolite UK Ltd. | Glass content of 25 vol% | [21] |
LMS-1 | 42.81 | 14.13 | 5.94 | Exolith Lab. | Lunar mare simulant | LMS-1 Fact Sheet, Exolith Lab, FL |
Geopolymer | OPC | |
---|---|---|
Advantages |
| |
Disadvantages |
|
|
Mineral | Formula | Specific Gravity | Mohs Scale | Impurities |
---|---|---|---|---|
Major minerals | ||||
olivine | (Mg, Fe)2SiO4 | 3.2–4.5 | 6.5–7 | Mn, Ni |
pyroxene | (Ca, Mg, Fe)2Si2O6 | 3.2–3.3 (enstatite) | 5–6 (enstatite) | Mn, Li, Na, Al, Sc, Na, Ti, Co |
plagioclase | Ca2Al2Si2O8 | 2.76 (anorthite) | 6–6.5 | |
ilmenite | FeTiO3 | 4.7–4.8 | 5–6 | Mn, Mg |
silica | SiO2 | 2.2–2.6 | 7 (quartz) | Ti, Fe, Mn (quartz) |
Minor minerals | ||||
apatite | Ca5(PO4)(F, Cl) | 3.2 | 5 | REE # |
baddeleyite | ZrO2 | 5.5–6 | 6.5 | Hf |
chromite-ulvöspinel | FeCr2O4-Fe2TiO4 | 4.8–5 | 5.5–6 | Al, V, Mn, Mg, Ca |
iron | Fe(Ni, Co) | 7.9 | Ni, Co | |
merrillite * | (Ca3)(PO4)2 | 3.1 | Mg, Na | |
pleonaste | (Fe, Mg)(Al, Cr)2O4 | 3.6–3.9 | 7.5–8 | Mn |
rutile | TiO2 | 4.2 | 6–6.5 | Nb, Ta |
feldspar | (Ca, Na, K)AlSi3O8 | 2.6 | 6–6.5 | Rb, Ba |
troilite # | FeS | 4.7–4.8 | ||
zircon | ZrSiO4 | 4.6–4.7 | 7.5 | |
zirkelite-zirconolite | (Ca, Fe)(Zr, Y, Ti)2O7 | 4.7 | 5.5 | Th, U, Ce, Nb |
dysanalyte | (Ca, Fe)(Ti, REE)O3 | 4–4.3 (perovskite) | 5–5.5 (perovskite) | |
thorite | ThSiO4 | 6.6–7.2 | 4.5–5 | U |
titanite | CaTiSiO5 | 3.5–3.6 | 5–5.5 | Fe, Al, REE, Th |
tranquillityite * | Fe8(Zr, Y)Ti3Si3O24 | 4.7 | Y, Al, Mn, Cr, Nb, REE | |
yittrobetafite * | (Ca, Y, U, Th, Pb, REE)2 (Ti, Nb)2O7 |
Source | Simulant | Activator | Curing Temperature | Compressive Strength (MPa) | Note |
---|---|---|---|---|---|
[1] | BP-1 JSC-1A LHS-1 | SS | 20 °C at 1 atm and vacuum for 7 d, followed by −80 to 600 °C curing | 5–10 (20 °C at 1 atm) 18–35 (20 °C (1 d)→600 °C (1 h)) 1–4 (20 °C at 1 atm (7 d)→vacuum at 20 °C) Unconsolidated (20 °C (4 d)→−80 °C (3 d) | Reduced CS for GPs cured under vacuum and exposed to sub-zero temperatures, Positive effect of high amorphous Al-Si content and high proportion of fines |
[2] | BH-1 | NaOH | 30.7→99.6→33.5 °C (discontinuous) for 24 and 72 h, followed the temperature variation cycle ranging from −178.9 °C to 99.6 °C | 16–38 at different temperature regimes, 15–18% decrease in CS after the cycle, 49–70% decrease in FS after the cycle | Durability test (lunar surface high and cryogenic temperature variation cycle at 30° latitude). Noticeable degradation after the cryogenic attack with increased porosity |
[3] | GVS | NaOH+SS | 20, 40, 60, 80 °C at 1 atm | 19 (20 °C), 42 (40 °C), 69 (60 °C), 76 (80 °C)—28 d | Curing temperature—the most significant factor influencing CS |
[47] | JSC-1A | SS (s) | Mixing simulant with SS followed by calcining at 260 °C for 1 h and 127 °C in air and vacuum for 1 h | Rockwell Hardness of 75 (RH 80 for annealed titanium) | Adequate space radiation shielding of ‘Regishell’ (simulant + 10% SS binder) (by Monte Carlo simulations) |
[18] | LN | NaOH+SS | 60 °C for 7 d | 59 (7 d) 50 at 120 °C 80 at −30 °C | Increased CS after 40 cycles of thermal shock (−196 °C for 1 h to 25 °C for 1 h) |
[48] | DNA-1 | NaOH | 80 °C for 3 h, followed by a lunar day-and-night cycle at −80 to 114 | 1 (at 1 atm), 13 (after lunar cycle at 1 atm), 4 (after lunar cycle at vacuum) | Beneficial use of urea 3% Increased CS after LDN cycle Reduced CS by vacuum dehydration |
[20] | BH-2 | NaOH | 30.7–99.6 °C at 1 atm and at vacuum for 0–72 h | 19 (24 h), 38 (72 h) at vacuum 20 (24 h), 33 (72 h) at 1 atm | Cured under lunar surface T variation Higher CS under vacuum curing |
[21] | DNA-1 | NaOH | 80 °C for 6 h, followed by freeze-thaw cycles at −80 to 80 | 16 (0 cycles), 25 (2 cycles), 24 (4 cycles), 32 (8 cycles) | Beneficial use of urea 3% for 3D printing, highest CS for pure GPs |
[49] | JSC-1A | NaOH, NaOH+ K2SiO3 | at RT for 28 d | 2 (2 M NaOH)-18 (8 M NaOH) | Less reduction in flexural strength with respect to CS beneficial use of urea. |
[6] | JSC-1A | NaOH+SS | 26 °C at 1 atm 26 °C at vacuum 106 °C at 1 atm | 10–12 (7 d) 11–12 (7 d), 9–10 (28 d) 9–13 (7), 10–20 (28 d) | Compression molding, 106 °C = average lunar daytime heat |
[4] | JSC-1A | NaOH+SS | 106 °C at vacuum 23 °C for 7 d 60 °C for 3 d (pouring and compression molding) | 17 (3 d, conventional pouring) 38 (3 d, compression molding) 33 (7 d, compression molding) | Adequate radiation shielding and thermal insulation of ‘Lunamer’ (by FLUKA simulations) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; van Riessen, A. A Review on Geopolymer Technology for Lunar Base Construction. Materials 2022, 15, 4516. https://doi.org/10.3390/ma15134516
Lee S, van Riessen A. A Review on Geopolymer Technology for Lunar Base Construction. Materials. 2022; 15(13):4516. https://doi.org/10.3390/ma15134516
Chicago/Turabian StyleLee, Sujeong, and Arie van Riessen. 2022. "A Review on Geopolymer Technology for Lunar Base Construction" Materials 15, no. 13: 4516. https://doi.org/10.3390/ma15134516
APA StyleLee, S., & van Riessen, A. (2022). A Review on Geopolymer Technology for Lunar Base Construction. Materials, 15(13), 4516. https://doi.org/10.3390/ma15134516