Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material, MEAM Processing and Suitable Specimen Selection
2.2. Processing Parameters and Printing Strategy
2.3. Experimental Set-Up
3. Results and Discussion
3.1. Copper Parts Manufacturing
3.2. Mechanical, Thermal, and Electrical Properties
4. Conclusions
- -
- Green copper samples manufactured using extrusion 3D printing resulted in a density of 5.57 g/cm3, which corresponds with a ~60% of relative density. By an effective solvent debinding stage, a maximum weight loss of 2.8% was observed, which resulted in brown parts with a density of ~5.41 g/cm3 and enough strength to be handled. The resulting interconnected porosity provided transport channels for the thermal debinding of the binder system rest, including backbone polymer.
- -
- Pure copper parts with ~95.3% relative density and a ~13.5% approximately isotropic shrinkage were prepared by 3D extrusion printing and sintering with optimized parameters for every process step. This densification result is better than the ones reported in the literature for the fabrication of copper components by indirect additive manufacturing, such as ~83.9% by rapid tooling or 85 to 90% by binder jetting. Moreover, the relative density achieved in the present study is close to those obtained with high-energy beam technologies such as SLM and EBM, which are more complex, expensive and currently developed techniques.
- -
- Tensile strength values of 205.8 MPa and a maximum elongation of 35% by tensile tests, and an average hardness of ~55 HV, were registered for 3D printed copper samples. The good combination of strength and strain led to a high toughness of 55 J/cm2, closed to the values reported for wrought copper.
- -
- The achieved mechanical properties are comparable to those obtained by SLM and EBM high-energy technologies, and higher than those for Binder Jetting indirect additive manufacturing methodology. In addition, given that a sintering process is carried out in the manufacturing process, the MEAM technique can achieve specific microstructures by modifying the sintering thermal cycle.
- -
- The measured average thermal conductivity for copper parts fabricated in this work was 363 W/mK, which means a ~90% IACS. The Van Der Pauw test carried out on material extrusion additive manufactured pure copper specimens revealed an average electrical conductivity of 48 × 106 S/m, that corresponds to a ~82%IACS. The MEAM technique attained better thermal and electrical conductive properties than SLM high-energy beam technology and Binder Jetting indirect additive manufacturing methodology. The experimentally achieved thermal and electrical conductivity values are slightly lower than those obtained in EBM and wrought copper, which are ~100% IACS thanks to their higher densification and good processability. The reduction in the measured properties in this study was attributed to thermal and electrical resistance possibly introduced through defects created during the manufacturing process, mainly the printing-induced and the sintering-inherent porosity. As was demonstrated, the porosity effect is more important in the final electrical properties than in the thermal ones.
Author Contributions
Funding
Conflicts of Interest
References
- Copper as Electrical Conductive Material with Above-Standard Performance Properties. 2015, pp. 1–38. Available online: https://www.conductivity-app.org/single-article/cu-overview#L15 (accessed on 1 June 2022).
- Jiang, P.-X.; Fan, M.-H.; Si, G.-S.; Ren, Z.-P. Thermal–hydraulic performance of small scale micro-channel and porous-media heat-exchangers. Int. J. Heat Mass Transf. 2001, 44, 1039–1051. [Google Scholar] [CrossRef]
- Vasiliev, L.L. Heat pipes in modern heat exchangers. Appl. Therm. Eng. 2005, 25, 1–19. [Google Scholar] [CrossRef]
- Lee, J.; Mudawar, I. Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I––pressure drop characteristics. Int. J. Heat Mass Transf. 2005, 48, 928–940. [Google Scholar] [CrossRef]
- Silvain, J.-F.; Heintz, J.-M.; Veillere, A.; Constantin, L.; Lu, Y.F. A review of processing of Cu/C base plate composites for interfacial control and improved properties. Int. J. Extreme Manuf. 2020, 2, 012002. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Liu, Y.; Li, Y. Experimental study on heat transfer performance of lotus-type porous copper heat sink. Int. J. Heat Mass Transf. 2013, 56, 172–180. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016, 61, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Ian, G.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies-Rapid Prototyping to Direct Digital Manufacturing; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Guo, X.; Kane, S.; Deng, Y.; Jung, Y.-G.; Lee, J.-H.; Zhang, J. Additive Manufacturing of Metallic Materials: A Review. J. Mater. Eng. Perform. 2018, 27, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rahman, Z.; Barakh Ali, S.F.; Ozkan, T.; Charoo, N.A.; Reddy, I.K.; Khan, M.A. Additive Manufacturing with 3D Printing: Progress from Bench to Bedside. AAPS J. 2018, 20, 101. [Google Scholar] [CrossRef]
- Dilberoglu, U.M.; Gharehpapagh, B.; Yaman, U.; Dolen, M. The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manuf. 2017, 11, 545–554. [Google Scholar] [CrossRef]
- Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Das, S.; Wohlert, M.; Beaman, J.J.; Bourell, D.L. Producing metal parts with selective laser sintering/hot isostatic pressing. JoM 1998, 50, 17–20. [Google Scholar] [CrossRef]
- Kumar, A.; Bai, Y.; Eklund, A.; Williams, C.B. Effects of hot isostatic pressing on copper parts fabricated via binder jetting. Procedia Manuf. 2017, 10, 935–944. [Google Scholar] [CrossRef]
- Karakurt, I.; Ho, K.Y.; Ledford, C.; Gamzina, D.; Horn, T.; Luhmann, N.C.; Lin, L. Development of a magnetically driven abrasive polishing process for additively manufactured copper structures. Procedia Manuf. 2018, 26, 798–805. [Google Scholar] [CrossRef]
- Singer, F.; Deisenroth, D.C.; Hymas, D.M.; Ohadi, M.M. Additively manufactured copper components and composite structures for thermal management applications. In Proceedings of the 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2017; pp. 174–183. [Google Scholar] [CrossRef]
- Neugebauer, R.; Müller, B.; Gebauer, M.; Töppel, T. Additive manufacturing boosts efficiency of heat transfer components. Assem. Autom. 2011, 31, 344–347. [Google Scholar] [CrossRef]
- Park, B.K.; Kim, D.; Jeong, S.; Moon, J.; Kim, J.S. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Film. 2007, 515, 7706–7711. [Google Scholar] [CrossRef]
- Espalin, D.; Muse, D.W.; MacDonald, E.; Wicker, R.B. 3D Printing multifunctionality: Structures with electronics. Int. J. Adv. Manuf. Technol. 2014, 72, 963–978. [Google Scholar] [CrossRef]
- Martin, J.D. Exploring Additive Manufacturing Processes for Direct 3D Printing of Copper Induction Coils. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017. [Google Scholar] [CrossRef]
- Zhakeyev, A.; Wang, P.; Zhang, L.; Shu, W.; Wang, H.; Xuan, J. Additive Manufacturing: Unlocking the Evolution of Energy Materials. Adv. Sci. 2017, 4, 1700187. [Google Scholar] [CrossRef] [Green Version]
- Gradl, P.R.; Greene, S.E.; Protz, C.S.; Ellis, D.L.; Lerch, B.A.; Locci, I.E. Development and hot-fire testing of additively manufactured copper combustion chambers for liquid rocket engine applications. In Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, USA, 10–12 July 2017. [Google Scholar]
- Tran, T.Q.; Chinnappan, A.; Lee, J.K.Y.; Loc, N.H.; Tran, L.T.; Wang, G.; Kumar, V.V.; Jayathilaka, W.A.D.M.; Ji, D.; Doddamani, M.; et al. 3D Printing of Highly Pure Copper. Metals 2019, 9, 756. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, S.D.; Dadbakhsh, S.; Goossens, L.; Kruth, J.P.; Van Humbeeck, J.; Vanmeensel, K. Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process. Technol. 2019, 270, 47–58. [Google Scholar] [CrossRef]
- Colopi, M.; Demir, A.G.; Caprio, L.; Previtali, B. Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser. Int. J. Adv. Manuf. Technol. 2019, 104, 2473–2486. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Murr, L.E.; Martinez, E.; Hernandez, D.H.; Martinez, J.L.; Machado, B.I.; Medina, F.; Frigola, P.; Wicker, R.B. Novel precipitate—Microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 2011, 59, 4088–4099. [Google Scholar] [CrossRef]
- El-Wardany, T.I.; She, Y.; Jagdale, V.N.; Garofano, J.K.; Liou, J.J.; Schmidt, W.R. Challenges in Three-Dimensional Printing of High-Conductivity Copper. J. Electron. Packag. 2018, 140, 020907. [Google Scholar] [CrossRef]
- Frigola, P.; Harrysson, O.A.; Horn, T.J.; West, H.A.; Aman, R.L.; Rigsbee, J.M.; Ramirez, D.A.; Murr, L.E.; Medina, F.; Wicker, R.B.; et al. Fabricating copper components with electron beam melting. Adv. Mater. Process. 2014, 172, 20–24. [Google Scholar]
- Gonzalez-Gutierrez, J. Indirect Additive Manufacturing Techniques for Metal Parts: Binder-Based Additive Manufacturing Techniques, Encyclopedia of Materials: Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2022; pp. 319–329. [Google Scholar] [CrossRef]
- Tuncer, N.; Bose, A. Solid-State Metal Additive Manufacturing: A Review. JoM 2020, 72, 3090–3111. [Google Scholar] [CrossRef]
- Yu, H.Z.; Jones, M.E.; Brady, G.W.; Griffiths, R.J.; Garcia, D.; Rauch, H.; Cox, C.D.; Hardwick, N. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr. Mater. 2018, 153, 122–130. [Google Scholar] [CrossRef]
- Friel, R.; Harris, R. Ultrasonic Additive Manufacturing—A Hybrid Production Process for Novel Functional Products. Procedia CIRP 2013, 6, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Cavaliere, P.; Aldwell, B.; Jenkins, R.; Liao, H.; Li, W.; Lupoi, R. Cold spray additive manufacturing and repair: Fundamentals and applications. Addit. Manuf. 2018, 21, 628–650. [Google Scholar] [CrossRef]
- Bai, Y.; Williams, C.B. An exploration of binder jetting of copper. Rapid Prototyp. J. 2015, 21, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munsch, M.; Schmidt-Lehr, M.; Wycisk, E. Metal Additive Manufacturing with Sinter-Based Technologies. AM Power Insights No. 4, Hamburg, Germany, 2018. Available online: https://am-power.de/en/insights/additive-manufacturing-sinter-basedtechnologies/ (accessed on 9 February 2022).
- Galati, M.; Minetola, P. Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts. Materials 2019, 12, 4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebisa, A.W.; Lemu, H.G. Investigating Effects of Fused-Deposition Modeling (FDM) Processing Parameters on Flexural Properties of ULTEM 9085 using Designed Experiment. Materials 2018, 11, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, O.S.; Silva, A.F.; Gomes, R. Fused deposition modeling with polypropylene. Mater. Des. 2015, 83, 768–776. [Google Scholar] [CrossRef]
- Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R.B. Fused filament fabrication of fiber-reinforced polymers: A review. Addit. Manuf. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Gibson, M.A.; Mykulowycz, N.M.; Shim, J.; Fontana, R.R.; Schmitt, P.; Roberts, A.; Ketkaew, J.; Shao, L.; Chen, W.; Bordeenithikasem, P.; et al. 3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses. Mater. Today 2018, 21, 697–702. [Google Scholar] [CrossRef]
- Dehdari Ebrahimi, N.; Ju, Y.S. Thermal conductivity of sintered copper samples prepared using 3D printing-compatible polymer composite filaments. Addit. Manuf. 2018, 24, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Langrana, N.A.; Sadanji, R.; Danforth, S.C. Solid freeform fabrication of metal components using fused deposition of metals. Mater. Des. 2002, 23, 97–105. [Google Scholar] [CrossRef]
- Bose, A.; Schuh, C.A.; Tobia, J.C.; Tuncer, N.; Mykulowycz, N.M.; Preston, A.; Barbati, A.C.; Kernan, B.; Gibson, M.A.; Krause, D.; et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. Int. J. Refract. Met. Hard Mater. 2018, 73, 22–28. [Google Scholar] [CrossRef]
- Singh, P.; Shaikh, Q.; Balla, V.K.; Atre, S.V.; Kate, K.H. Estimating powder-polymer material properties used in design for metal fused filament fabrication (DfMF3). JoM 2019, 11, 840. [Google Scholar] [CrossRef]
- Lengauer, W.; Duretek, I.; Fürst, M.; Schwarz, V.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C.; Kitzmantel, M.; Neubauer, E.; Lieberwirth, C.; et al. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. Int. J. Refract. Met. Hard Mater. 2019, 82, 141–149. [Google Scholar] [CrossRef]
- Berger, C.; Abel, J.; Pötschke, J.; Moritz, T. Properties of additive manufactured hardmetal components produced by fused filament fabrication (FFF). In Proceedings of the Euro PM2018 Congress and Exhibition, Bilbao, Spain, 14–18 October 2018; European Powder Metallurgy Association (EMPA): Shrewsbury, UK, 2018. ISBN 978-1-899072-50-7. [Google Scholar]
- Jafari, M.A.; Han, W.; Mohammadi, F.; Safari, A.; Danforth, S.C.; Langrana, N. A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyp. J. 2000, 6, 161–174. [Google Scholar] [CrossRef]
- German, R.M.; Bose, A. Injection Molding of Metals and Ceramics; Metal Powder Industries Federation: Princeton, NJ, USA, 1997. [Google Scholar]
- Tosto, C.; Tirillò, J.; Sarasini, F.; Cicala, G. Hybrid Metal/Polymer Filaments for Fused Filament Fabrication (FFF) to Print Metal Parts. Appl. Sci. 2021, 11, 1444. [Google Scholar] [CrossRef]
- Roshchupkin, S.; Kolesov, A.; Tarakhovskiy, A.; Tishchenko, I. A brief review of main ideas of metal fused filament fabrication. Mater. Today Proc. 2020, 38, 2063–2067. [Google Scholar] [CrossRef]
- Godec, D.; Cano, S.; Holzer, C.; Gonzalez-Gutierrez, J. Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel. Materials 2020, 13, 774. [Google Scholar] [CrossRef] [Green Version]
- Sadaf, M.; Bragaglia, M.; Nanni, F. A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication. J. Manuf. Process. 2021, 67, 141–150. [Google Scholar] [CrossRef]
- Singh, G.; Missiaen, J.M.; Bouvard, D.; Chaix, J.M. Copper extrusion 3D printing using metal injection moulding feedstock: Analysis of process parameters for green density and surface roughness optimization. Addit. Manuf. 2021, 38, 101778. [Google Scholar] [CrossRef]
- Ott, J.; Burghardt, A.; Britz, D.; Mucklich, F. Free-sintering study of pressure-less manufactured green bodies made of fine Cu powder for electronic applications. In Proceedings of the Euro PM2019 International Powder Metallurgy Congress & Exhibition, Maastricht, The Netherlands, 13–16 October 2019. [Google Scholar]
- Hong, S.; Sanchez, C.; Du, H.; Kim, N. Fabrication of 3D Printed Metal Structures by Use of High-Viscosity Cu Paste and a Screw Extruder. J. Electron. Mater. 2015, 44, 836–841. [Google Scholar] [CrossRef]
- Yan, X.; Hao, L.; Xiong, W.; Tang, D. Research on influencing factors and its optimization of metal powder injection molding without mold via an innovative 3D printing method. RSC Adv. 2017, 7, 55232–55239. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Gao, W.; Xi, J.; Li, H.; Ren, F. Development of copper powder paste for direct printing and soft mold casting. Addit. Manuf. 2019, 31, 100992. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, X.; Song, Z.; Zhao, C.; Liu, Q.; Xue, J.; Li, X. Process Parameter Optimization of Extrusion-Based 3D Metal Printing Utilizing PW–LDPE–SA Binder System. Materials 2017, 10, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MarkForged Metal X. Available online: https://markforged.com/3d-printers/metal (accessed on 22 February 2022).
- Desktop Metal Studio System 2. Available online: https://www.desktopmetal.com/products/studio (accessed on 22 February 2022).
- De Calan, G. Benchmark of AM Technologies; NanoeWebinar: Ballainvilliers, France, 2020; Available online: https://nanoe.com/ (accessed on 22 February 2022).
- Gonzalez-Gutierrez, J.; Thompson, Y.; Handl, D.; Cano, S.; Schuschnigg, S.; Felfer, P.; Kukla, C.; Holzer, C.; Burkhardt, C. Powder content in powder extrusion moulding of tool steel: Dimensional stability, shrinkage, and hardness. Mater. Lett. 2021, 283, 128909. [Google Scholar] [CrossRef]
- Gloeckle, C.; Konkol, T.; Jacobs, O.; Limberg, W.; Ebel, T.; Handge, U.A. Processing of highly filled polymer–metal feedstocks for fused filament fabrication and the production of metallic implants. Materials 2020, 13, 4413. [Google Scholar] [CrossRef] [PubMed]
- Ultrafuse 316L-User Guidelines for 3D Printing Metal Parts. Available online: https://www.mholland.com/media/BASF_Ultrafuse_316L_User_Guidelines.pdf (accessed on 22 February 2022).
- Markforged Pure Copper Metal-Polymer Filament Datasheet. Available online: https://www-objects.markforged.com/craft/materials/Copper-V1.1.pdf (accessed on 23 February 2022).
- ISO 3325:1996; Sintered Metal Materials, Excluding Hardmetals. Determination of Tranverse Rupture Strength. International Organization for Standardization: Geneva, Switzerland, 1996. Available online: https://www.iso.org/standard/1584.html (accessed on 1 June 2022).
- ISO 5754:2017; Sintered Metal Materials, Excluding Hardmetals. Unnotched Impact Test Piece. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/69222.html (accessed on 1 June 2022).
- Spierings, A.B.; Schneider, M.; Eggenberger, R. Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyp. J. 2011, 17, 380–386. [Google Scholar] [CrossRef]
- ISO 2738:1999; Sintered Metal Materials, Excluding Hardmetals. Permeable Sintered Metal Materials. Determination of Density, Oil Content and Open Porosity. International Organization for Standardization: Geneva, Switzerland, 1999. Available online: https://www.iso.org/standard/21494.html (accessed on 1 June 2022).
- Ramadan, A.A.; Gould, R.D.; Ashour, A. On the Van der Pauw method of resistivity measurements. Thin Solid Films 1994, 239, 272–275. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- European Copper Institute. Copper as Electrically Conductive Material with above Standard Performance Properties. 2020. Available online: https://conductivity-app.org/ (accessed on 21 December 2021).
- Raab, S.J.; Guschlbauer, R.; Lodes, M.A.; Körner, C. Thermal and electrical conductivity of 99.9% pure copper processed via selective electron beam melting. Adv. Eng. Mater. 2016, 18, 1661–1666. [Google Scholar] [CrossRef]
- Meeder, M.P. Modeling the Thermal and Electrical Properties of Different Density Sintered Binder Jetted Copper for Verification and Revision of the Wiedemann-Franz Law. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2016. [Google Scholar]
- Álvarez, K.; Lagos, R.F.; Aizpun, M. Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts. Ing. E Investig. 2016, 36, 110. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z. Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 2001, 301, 125–130. [Google Scholar] [CrossRef]
- Davis, J.R. and ASM International, Copper and Copper Alloys (ASM Internationals), 2001, ASM International Materials Park, OH: 44073-0002. Available online: www.asminternational.org (accessed on 1 June 2022).
- Liang, N.; Zhao, Y.; Wang, J.; Zhu, Y. Effect of grain structure on Charpy impact behavior of copper. Sci. Rep. 2017, 7, srep44783. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.Y.; Wang, J.; Bai, Y.; Huxtable, S.T.; Williams, C.B. Impacts of process-induced porosity on material properties of copper made by binder jetting additive manufacturing. Mater. Des. 2019, 182, 108001. [Google Scholar] [CrossRef]
- Ikeshoji, T.T.; Nakamura, K.; Yonehara, M.; Imai, K.; Kyogoku, H. Selective laser melting of pure copper. JoM 2018, 70, 396–400. [Google Scholar] [CrossRef]
- Yan, X.; Chang, C.; Dong, D.; Gao, S.; Ma, W.; Liu, M.; Liao, H.; Yin, S. Microstructure and mechanical properties of pure copper manufactured by selective laser melting. Mater. Sci. Eng. A 2020, 789, 139615. [Google Scholar] [CrossRef]
- Lodes, M.A.; Guschlbauer, R.; Körner, C. Process development for the manufacturing of 99.94% pure copper via selective electron beam melting. Mater. Lett. 2015, 143, 298–301. [Google Scholar] [CrossRef]
- Guschlbauer, R.; Momeni, S.; Osmanlic, F.; Körner, C. Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties. Mater. Charact. 2018, 143, 163–170. [Google Scholar] [CrossRef]
- Gärtner, F.; Stoltenhoff, T.; Voyer, J.; Kreye, H.; Riekehr, S.; Koçak, M. Mechanical properties of cold-sprayed and thermally sprayed copper coatings. Surf. Coat. Technol. 2006, 200, 6770–6782. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef]
- Vincent, C.; Silvain, J.; Heintz, J.; Chandra, N. Effect of porosity on the thermal conductivity of copper processed by powder metallurgy. J. Phys. Chem. Solids 2012, 73, 499–504. [Google Scholar] [CrossRef]
- German, R.M. Sintering Theory and Practice; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Feng, Y.; Zheng, H.; Zhu, Z.; Zu, F.-Q. The microstructure and electrical conductivity of aluminum alloy foams. Mater. Chem. Phys. 2003, 78, 196–201. [Google Scholar] [CrossRef]
- Koh, J.; Fortini, A. Prediction of thermal conductivity and electrical resistivity of porous metallic materials. Int. J. Heat Mass Transf. 1973, 16, 2013–2022. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Printing Scale | 1 |
Filling Type | Solid infill |
Sintered Layer Thickness (mm) | 0.129 |
Exterior Wall Layers | 4 |
Direction | Di CAD Model (mm) | Di Green (mm) | Di Sintered (mm) | % Shrinkage | ∆D (%) |
---|---|---|---|---|---|
X axis | 55 | 63.572 ± 0.009 | 55.151 ± 0.060 | 13.2 | −0.151 ± 0.055 |
Y axis | 10 | 11.462 ± 0.006 | 9.920 ± 0.012 | 13.4 | 0.024 ± 0.003 |
Z axis | 10 | 11.539 ± 0.012 | 9.988 ± 0.018 | 13.8 | 0.080 ± 0.016 |
Properties | Indirect Processes | Direct/Melting Processes | Wrought [81,82] | |||
---|---|---|---|---|---|---|
MEAM | Binder Jetting [37,83] | SLM [26,84,85] | EBM [86,87] | |||
This Study | Markforged [69] | |||||
Relative Density (%) | 95.3 ± 0.5 | 96–98 | 85.8 ± 0.4 | 99.1 ± 0.5 | 99.95 | 100 |
Yield Strength (MPa) | 65.0 ± 1.5 | 26 | - | 187 ± 5.3 | 78.1 ± 0.9 | 69–365 |
Tensile Strength (MPa) | 205.8 ± 5.0 | 193 | 176.4 ± 6.5 | 248 ± 8.5 | 177 ± 3.3 | 220–455 |
Maximum elongation (%) | 35.1 ± 1.4 | 45 | 28.9 ± 1.6 | 9.2 ± 1.75 | 59.3 ± 7.5 | 4–55 |
Impact Energy (J/cm2) | 55 ± 2 | - | - | - | - | 66.8 ± 1.6 |
Vickers Hardness (HV) | 54.8 ± 2.1 | - | - | 85 ± 4.2 | 57.8 ± 1.55 | 40–130 |
Thermal Conductivity (W/m·K) | 363 ± 9 (90% IACS) | 350 | 245.7 ± 4.7 (61% IACS) | 336 ± 7 (84% IACS) | 390 ± 5 (100% IACS) | 390 (100% IACS) |
Electrical Conductivity (×106 S/m) | 48 ± 1 (82% IACS) | 84% IACS | 37 ± 4 (65% IACS) | 51 ± 2 (88% IACS) | 56 ± 1 (97% IACS) | 58 (100% IACS) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cañadilla, A.; Romero, A.; Rodríguez, G.P.; Caminero, M.Á.; Dura, Ó.J. Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing. Materials 2022, 15, 4644. https://doi.org/10.3390/ma15134644
Cañadilla A, Romero A, Rodríguez GP, Caminero MÁ, Dura ÓJ. Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing. Materials. 2022; 15(13):4644. https://doi.org/10.3390/ma15134644
Chicago/Turabian StyleCañadilla, Antonio, Ana Romero, Gloria P. Rodríguez, Miguel Á. Caminero, and Óscar J. Dura. 2022. "Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing" Materials 15, no. 13: 4644. https://doi.org/10.3390/ma15134644
APA StyleCañadilla, A., Romero, A., Rodríguez, G. P., Caminero, M. Á., & Dura, Ó. J. (2022). Mechanical, Electrical, and Thermal Characterization of Pure Copper Parts Manufactured via Material Extrusion Additive Manufacturing. Materials, 15(13), 4644. https://doi.org/10.3390/ma15134644