Preparation and Characterization of Porous Materials from Pineapple Peel at Elevated Pyrolysis Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermochemical Properties of Pineapple Peel
- -
- TGA: model TGA-51 (Shimadzu Co., Tokyo, Japan)
- -
- EDS: model X-stream-2 (Oxford Instruments plc, Abingdon, UK)
- -
- Calorific value: model CALORIMETER ASSY 6200 (Parr Co., Moline, IL, USA)
2.3. Pyrolysis Experiments
2.4. Analysis of Resulting Biochar Properties
2.5. Adsorption Experiments
3. Results and Discussion
3.1. Thermochemical Properties of Pineapple Peel
3.2. Yield and Pore Analysis of the Resulting Biochar Materials
- (1)
- The absorption peak at 3450 cm−1 in the region of 3300–3700 cm−1 should be assigned to the stretching vibration of the hydroxyl (O-H) group.
- (2)
- The peak at approximately 1647 cm−1 could be associated with carbonyl (C=O) group stretching.
- (3)
- The sharp peak at 1380 cm−1 could be due to C-O asymmetric stretching.
- (4)
- The peak at 1110 cm−1 could be attributed to C-O-C aliphatic/ether stretching.
- (5)
- Several weak peaks in the region of <1000 cm−1 were assigned to be due to C-H bending for aromatic out-of-plane deformations.
3.3. Adsorption Performances of the PP-BC Product
4. Conclusions
- -
- The dried PP biomass has a relatively higher ash content (8.28 wt%) than that of common biomass husks, but it has a high combustible content comprising volatile matter (73.23 wt%) and fixed carbon (18.49 wt%).
- -
- As the pyrolysis temperature increased from 800 to 900 °C for a residence time of 20 min, the data on the BET surface area of the resulting biochar products significantly jumped from 11.98 to 119.43 m2/g. At a residence time of 60 min, the BET surface area also increased from 32.34 to 133.40 m2/g.
- -
- From the data on the nitrogen adsorption–desorption isotherms and pore size distribution, both micropores (pore diameters of <2.0 nm) and mesopores (pore diameters of 2.0–50.0 nm) are present in the PP-based biochar products.
- -
- Due to its good fittings in the pseudo-second-order model and its hydrophilic nature as seen in the Fourier Transform infrared spectroscopy (FTIR), the resulting biochar could be a porous material to be used for the effective removal of cationic compounds (i.e., methylene blue (MB)) from liquid phases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wali, N. Pineapple (Ananas comosus). In Nonvitamin and Nonmineral Nutritional Nupplements; Mabavi, S.M., Silva, A.S., Eds.; Academic Press: London, UK, 2019; Chapter 3.34; pp. 367–373. [Google Scholar]
- Leading Countries in Pineapple Production Worldwide in 2020. Available online: https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries/ (accessed on 13 May 2022).
- Aili Hamzah, A.F.; Hamzah, M.H.; Che Man, H.; Jamali, N.S.; Siajam, S.I.; Ismail, M.H. Recent updates on the conversion of pineapple waste (Ananas comosus) to value-added products, future perspectives and challenges. Agronomy 2021, 11, 2221. [Google Scholar] [CrossRef]
- Upadhyay, A.; Lama, J.P.; Tawata, S. Utilization of pineapple waste: A review. J. Food Sci. Technol. Nepal 2013, 6, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Cheok, C.Y.; Mohd Adzahan, N.; Abdul Rahman, R.; Zainal Abedin, H.; Hussain, N.; Sulaiman, R.; Chong, G.H. Current trends of tropical fruit waste utilization. Crit. Rev. Food Sci. Nutr. 2018, 58, 335–361. [Google Scholar] [CrossRef] [PubMed]
- Hikal, W.; Mahmoud, A.; Said-Al Ahl, H.; Bratovcic, A.; Tkachenko, K.; Kačániová, M.; Rodriguez, R. Pineapple (Ananas comosus L. Merr.), waste streams, characterisation and valorisation: An overview. Open J. Ecol. 2021, 11, 610–634. [Google Scholar] [CrossRef]
- Choonut, A.; Saejong, M.; Sangkharak, K. The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 2014, 52, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Patti, A.F.; Ranganathan, V.; Arora, A. Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food Bioprod. Process. 2019, 117, 38–50. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Feng, X.; Ma, L.; Zhang, Y.; Dai, H. Lignocellulose nanocrystals from pineapple peel: Preparation, characterization and application as efficient Pickering emulsion stabilizers. Food Res. Int. 2021, 150 Pt A, 110738. [Google Scholar] [CrossRef]
- Gómez-Aguilar, D.L.; Rodríguez-Miranda, J.P.; Salcedo-Parra, O.J. Fruit peels as a sustainable waste for the biosorption of heavy metals in wastewater: A review. Molecules 2022, 27, 2124. [Google Scholar] [CrossRef]
- Mishra, V.; Balomajumder, C.; Agarwal, V.K. Biosorption of Zn (II) onto the surface of non-living biomasses: A comparative study of adsorbent particle size and removal capacity of three different biomasses. Water Air Soil Pollut. 2010, 211, 489–500. [Google Scholar] [CrossRef]
- Turkmen Koc, S.N.; Kipcak, A.S.; Moroydor Derun, E.; Tugrel, N. Removal of zinc from wastewater using orange, pineapple and pomegranate peels. Int. J. Environ. Sci. Technol. 2021, 18, 2781–2792. [Google Scholar] [CrossRef]
- Yılmaz, O.; Tugrul, N. Zinc adsorption from aqueous solution using lemon, orange, watermelon, melon, pineapple, and banana rinds. Water Pract. Technol. 2022, 17, 318–328. [Google Scholar] [CrossRef]
- Foo, L.P.Y.; Tee, C.Z.; Raimy, N.R.; Hassell, D.G.; Lee, L.Y. Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution. Clean Technol. Environ. Policy 2012, 14, 273–280. [Google Scholar] [CrossRef]
- Dotto, G.L.; Sellaoui, L.; Lima, E.C.; Ben Lamine, A. Physicochemical and thermodynamic investigation of Ni(II) biosorption on various materials using the statistical physics modeling. J. Mol. Liq. 2016, 220, 129–135. [Google Scholar] [CrossRef]
- Krishni, R.R.; Foo, K.Y.; Hameed, B.H. Food cannery effluent, pineapple peel as an effective low-cost biosorbent for removing cationic dye from aqueous solutions. Desalination Water Treat. 2014, 52, 6093–6103. [Google Scholar] [CrossRef]
- Ahmad, A.; Khatoon, A.; Mohd-Setapar, S.H.; Kumar, R.; Rafatulah, M. Chemically oxidized pineapple fruit peel for the biosorption of heavy metals from aqueous solutions. Desalination Water Treat. 2016, 57, 6432–6442. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction, 3rd ed.; Academic Press: San Diego, CA, USA, 2018. [Google Scholar]
- Fu, B.; Ge, C.; Yue, L.; Luo, J.; Deng, H.; Yu, H. Characterization of biochar derived from pineapple peel waste and its application for sorption of oxytetracycline from aqueous solution. BioResources 2016, 11, 9017–9035. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gu, L.; Liu, X.; Zhang, X.; Cao, L.; Hu, X. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene. Int. Biodeterior. Biodegrad. 2016, 111, 78–84. [Google Scholar] [CrossRef]
- Shakya, A.; Agarwal, T. Removal of Cr(VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment. J. Mol. Liq. 2019, 293, 111497. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Li, C.; Zhang, Y.; Ma, C. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total Environ. 2020, 707, 135544. [Google Scholar] [CrossRef]
- Mahmuda, K.N.; Wen, T.H.; Zakaria, Z.A. Activated carbon and biochar from pineapple waste biomass for the removal of methylene blue. Environ. Toxicol. Manag. 2021, 1, 30–36. [Google Scholar] [CrossRef]
- Otieno, A.O.; Home, P.G.; Raude, J.M.; Murunga, S.I.; Ngumba, E.; Ojwang, D.O.; Tuhkanen, T. Pineapple peel biochar and lateritic soil as adsorbents for recovery of ammonium nitrogen from human urine. J Environ. Manag. 2021, 293, 112794. [Google Scholar] [CrossRef] [PubMed]
- Chia, C.H.; Downie, A.; Munroe, P. Characteristics of biochar: Physical and structural properties. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; pp. 89–109. [Google Scholar]
- Sun, J.; He, F.; Pan, Y.; Zhang, Z. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 12–22. [Google Scholar] [CrossRef]
- Tsai, W.T.; Huang, P.C. Characterization of acid-leaching cocoa pod husk (CPH) and its resulting activated carbon. Biomass Convers. Biorefin. 2018, 8, 521–528. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lin, Y.Q.; Tsai, C.H.; Chung, M.H.; Chu, M.H.; Huang, H.J.; Jao, Y.H.; Yeh, S.I. Conversion of water caltrop husk into biochar by torrefaction. Energy 2020, 195, 116967. [Google Scholar] [CrossRef]
- Vo, T.K.; Ly, H.V.; Lee, O.K.; Lee, E.Y.; Kim, C.H.; Seo, J.W.; Kim, J.; Kim, S.S. Pyrolysis characteristics and kinetics of microalgal Aurantiochytrium sp. KRS101. Energy 2017, 118, 369–376. [Google Scholar] [CrossRef]
- Vo, T.K.; Cho, J.S.; Kim, S.S.; Ko, J.H.; Kim, J. Genetically engineered hybrid poplars for the pyrolytic production of biooil: Pyrolysis characteristics and kinetics. Energy Convers. Manag. 2017, 153, 48–59. [Google Scholar] [CrossRef]
- Vo, T.K.; Kim, S.S.; Kim, J. Pyrolysis characteristics and quantitative kinetic model of microalgae Tetralselmis sp. Korean J. Chem. Eng. 2021, 39, 1478–1486. [Google Scholar] [CrossRef]
- Chang, Y.M.; Tsai, W.T.; Li, M.H. Chemical characterization of char derived from slow pyrolysis of microalgal residue. J. Anal. Appl. Pyrolysis 2015, 111, 88–93. [Google Scholar] [CrossRef]
- Condon, J.B. Surface Area and Porosity Determinations by Phyisorption: Measurement and Theory; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Tsai, W.T.; Huang, P.C.; Lin, Y.Q. Reusing cow manure for the production of activated carbon using potassium hydroxide (KOH) activation process and its liquid-phase adsorption performance. Processes 2019, 7, 737. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.S.; Chiang, C.C.; Hsu, Y.C. Sorption kinetics for dye removal from aqueous solution using activated clay. Sep. Sci. Technol. 2001, 36, 2473–2488. [Google Scholar] [CrossRef]
- Tsai, W.T.; Hsu, H.C.; Su, T.Y.; Lin, K.Y.; Lin, C.M.; Dai, T.H. The adsorption of cationic dye from aqueous solution onto acid-activated andesite. J. Hazard. Mater. 2007, 147, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, B.M.; Baxter, L.L.; Miles, T.R., Jr.; Miles, T.R. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Aup-Ngoen, K.; Noipitak, M. Effect of carbon-rich biochar on mechanical properties of PLA-biochar composites. Sustain. Chem. Pharm. 2020, 15, 100204. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Tsai, C.H.; Tsai, W.T.; Liu, S.C.; Lin, Y.Q. Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature. Biomass Convers. Biorefin. 2018, 8, 237–243. [Google Scholar] [CrossRef]
- Tsai, W.T.; Jiang, T.J.; Tang, M.S.; Chang, C.H.; Kuo, T.H. Enhancement of thermochemical properties on rice husk under a wide range of torrefaction conditions. Biomass Conv. Bioref. 2021, 1–10. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.; Joseph, S.; del Campo, B.; Boateng, A.A.; GarciaPerez, M.; Masek, O. Fundamentals of biochar production. In Biochar for Environmental Management, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; pp. 39–61. [Google Scholar]
- Tsai, W.T.; Jiang, T.J.; Lin, Y.-Q.; Chang, H.L.; Tsai, C.-H. Preparation of porous biochar from soapberry pericarp at severe carbonization conditions. Fermentation 2021, 7, 228. [Google Scholar] [CrossRef]
- Groen, J.C.; Peffer, L.A.A.; Perez-Ramirez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Mesoporous Microporous Mater. 2006, 60, 1–17. [Google Scholar] [CrossRef]
- Mukome, F.N.D.; Parikh, S.J. Chemical, physical, and surface characterization of biochar. In Biochar: Production, Characterization, and Applications; Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 67–96. [Google Scholar]
- Suzuki, M. Adsorption Engineering; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Tsai, W.T.; Hsu, C.H.; Lin, Y.Q.; Tsai, C.-H.; Chen, W.-S.; Chang, Y.-T. Enhancing the pore properties and adsorption performance of cocoa pod husk (CPH)-derived biochars via post-acid treatment. Processes 2020, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.T.; Hsu, C.H.; Lin, Y.Q. Highly porous and nutrients-rich biochar derived from dairy cattle manure and its potential for removal of cationic compound from water. Agriculture 2019, 9, 114. [Google Scholar] [CrossRef] [Green Version]
Properties a | Value |
---|---|
Proximate analysis b | |
Ash (wt%) | 8.28 ± 0.36 |
Volatile matter (wt%) | 73.23 ± 0.71 |
Fixed carbon c (wt%) | 18.49 |
Elemental composition d | |
Carbon (wt%) | 50.49 |
Oxygen (wt%) | 48.25 |
Sodium (wt%) | 0.04 |
Magnesium (wt%) | 0.19 |
Aluminum (wt%) | 0.04 |
Silicon (wt%) | 0.14 |
Phosphorus (wt%) | 0.33 |
Sulfur (wt%) | 0.47 |
Calcium (wt%) | 0.05 |
Calorific value (MJ/kg) b | 18.02 ± 0.24 |
Pore Property | PP-BC-800-20 | PP-BC-800-60 | PP-BC-900-00 | PP-BC-900-20 | PP-BC-900-60 |
---|---|---|---|---|---|
Surface area (m2/g) | |||||
Single point surface area a | 12.06 | 32.66 | ˂2 | 117.49 | 131.14 |
BET surface area b | 11.98 | 32.34 | ˂2 | 119.43 | 133.40 |
Langmuir surface area | 17.69 | 47.63 | ˂2 | 184.88 | 194.05 |
t-plot micropore area c | 8.90 | 25.82 | -- g | 88.53 | 107.56 |
t-plot external surface area d | 3.08 | 6.52 | -- g | 30.90 | 25.84 |
Pore volume (cm3/g) | |||||
Total pore volume e | 0.0119 | 0.00223 | -- g | 0.0687 | 0.0731 |
t-plot micropore area c | 0.0046 | 0.00134 | -- g | 0.0448 | 0.0545 |
Pore size (nm) | |||||
Average pore width f | 3.99 | 2.76 | -- g | 2.30 | 2.19 |
Initial MB Concentration (mg/L or ppm) | k (g/(mg·min)) | qe (mg/g) | Correlation Coefficient | t1/2 (min) | h (mg/(g·min)) |
---|---|---|---|---|---|
5 | 0.0151 | 20.28 | 0.998 | 3.21 | 6.21 |
15 | 0.0059 | 28.82 | 0.981 | 5.88 | 4.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, W.-T.; Ayestas, R.; Tsai, C.-H.; Lin, Y.-Q. Preparation and Characterization of Porous Materials from Pineapple Peel at Elevated Pyrolysis Temperatures. Materials 2022, 15, 4686. https://doi.org/10.3390/ma15134686
Tsai W-T, Ayestas R, Tsai C-H, Lin Y-Q. Preparation and Characterization of Porous Materials from Pineapple Peel at Elevated Pyrolysis Temperatures. Materials. 2022; 15(13):4686. https://doi.org/10.3390/ma15134686
Chicago/Turabian StyleTsai, Wen-Tien, Raquel Ayestas, Chi-Hung Tsai, and Yu-Quan Lin. 2022. "Preparation and Characterization of Porous Materials from Pineapple Peel at Elevated Pyrolysis Temperatures" Materials 15, no. 13: 4686. https://doi.org/10.3390/ma15134686
APA StyleTsai, W. -T., Ayestas, R., Tsai, C. -H., & Lin, Y. -Q. (2022). Preparation and Characterization of Porous Materials from Pineapple Peel at Elevated Pyrolysis Temperatures. Materials, 15(13), 4686. https://doi.org/10.3390/ma15134686