Experimental and Numerical Analysis of the Concrete Maturation Process with Additive of Phase Change Materials
Abstract
:1. Introduction
2. Description of the Experimental Analysis
2.1. Materials
- use of PCM pipes in concrete,
- use of lightweight aggregates impregnated with PCM,
- adding powder or in liquid PCM microcapsules to the concrete,
- impregnation of concrete with PCM [13].
2.2. Methods
2.3. Experimental Results
3. Computer Simulations of the Process
3.1. Transient Heat Flow
3.2. Numerical Modelling of Laboratory Tests, Parametric Study
3.2.1. Discretization
3.2.2. Conductivity
3.2.3. Film Condition
3.2.4. Specific Heat
3.2.5. Heat Generation
4. Comparison of Experimental Results and Computer Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
SUBROUTINE HETVAL(CMNAME,TEMP,TIME,DTIME,SVAR,FLUX,PREDEF, 1 DPRED) INCLUDE ‘ABA_PARAM.INC’ CHARACTER*80 CMNAME DIMENSION TEMP(2),SVAR(1),PREDEF(1),TIME(2),FLUX(2),DPRED(1) parameter (a1 = 0, a2 = 27.82609, a3 = −1.20983) parameter (b1 = 14,044.08, b2 = −1061.22, b3 = 19.59184) parameter (c1 = 1400, c2 =-88, c3 = 1.2) parameter (small =1.0d-9) FLUX(1) = 0 FLUX(2) = 0 IF (TEMP(1).GE.0) THEN IF (TEMP(1).LE.23) THEN FLUX(1) = a1 + a2*TEMP(1)+ a3 * TEMP(1) ** 2 FLUX(2) = a2 + 2 * a3 *TEMP(1) ELSEIF (TEMP(1).LE.30) THEN FLUX(1) = b1 + b2*TEMP(1)+ b3 * TEMP(1) ** 2 FLUX(2) = b2 + 2 * b3 *TEMP(1) ELSEIF (TEMP(1).LE.50) THEN FLUX(1) = c1 + c2*TEMP(1)+ c3 * TEMP(1) ** 2 FLUX(2) = c2 + 2 * c3 *TEMP(1) ELSE FLUX(1) = 0 FLUX(2) = 0 END IF END IF RETURN END |
References
- Hsino, M.; Pasławski, J. Phase Change Materials as a Modifier of Ageing Cement Concrete in Hot and Dry Climate. Adv. Mater. Res. 2013, 804, 129–134. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete; Pearson Education Limited: London, UK, 2011. [Google Scholar]
- Emborg, M.; Bernander, S. Assessment of risk of thermal cracking in hardening concrete. J. Struct. Eng. 1994, 120, 2893–2912. [Google Scholar] [CrossRef]
- Bofang, Z. Thermal Stresses and Temperature Control of Mass Concrete; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Benboudjema, F.; Torrenti, J.M. Early-age behaviour of concrete nuclear containments. Nucl. Eng. Des. 2008, 238, 2495–2506. [Google Scholar] [CrossRef]
- Pan, Y.; Prado, A.; Porras, R.; Hafez, O.M.; Bolander, J.E. Lattice modeling of early-age behavior of structural concrete. Materials 2017, 10, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobuhiro, M.; Kazuo, U. Nonlinear thermal stress analysis of a massive concrete structure. Comput. Struct. 1987, 26, 287–296. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications. J. Energy Storage 2021, 33, 101913. [Google Scholar] [CrossRef]
- Hsino, M.; Pasławski, J. Flexible procedure for concreting in hot and dry climate based on Phase Change Material. In Proceedings of the 3rd International Workshop on Flexibility in Sustainable Construction (ORSDCE 2018), Poznan, Poland, 20 April 2018; Volume 222, p. 01005. [Google Scholar] [CrossRef]
- Bentz, D.P.; Turpin, R. Potential applications of phase change materials in concrete technology. Cem. Concr. Compos. 2007, 29, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Hsino, M. The Use of Phase-Change Materials for Concrete Care in Dry Tropical Climate. Doctoral Dissertation, Poznan, Poland. 2020, p. 184. (In Polish). Available online: https://sin.put.poznan.pl/files/download/33785 (accessed on 28 June 2022).
- Farnam, Y.; Krafcik, M.; Liston, L.; Washington, T.; Erk, K.; Tao, B.; Weiss, W.J. Evaluating the use of phase change materials in concrete pavement to melt ice and snow. J. Mater. Civ. Eng. 2015, 28, 04015161. [Google Scholar] [CrossRef]
- Šavija, B. Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review. Materials 2018, 11, 654. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Fernandes, F.; Manari, S.; Aguayo, M.; Santos, K.; Oey, T.; Wei, Z.; Falzone, G.; Neithalath, N.; Sant, G. On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cem. Concr. Compos. 2014, 51, 14–26. [Google Scholar] [CrossRef]
- Snoeck, D.; Priem, B.; Dubruel, P.; De Belie, N. Encaplsulated phase-change materials as additives in cementitious materials to promote thermal comfort in concrete constructions. Mater. Struct. 2016, 49, 225–239. [Google Scholar] [CrossRef]
- Šavija, B.; Lukovic, M.; Kotteman, G.M.; Figuieredo, S.C.; de Mendica Filho, F.F.; Schlangen, E. Development of ductile cementitious composites incorporating microencapsulated phase change materials. Int. J. Adv. Eng. Sci. Appl. Math. 2017, 9, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Thiele, A.M.; Wei, Z.; Falzone, G.; Young, B.A.; Neithalath, N.; Sant, G.; Pilon, L. Figure of merit for the thermal performance of cementitious composites containing phase change materials. Cem. Concr. Compos. 2016, 65, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Young, B.A.; Falzone, G.; She, Z.; Thiele, A.M.; Wei, Z.; Neithalath, N.; Sant, G.; Pilon, L. Early-age temperature evolutions in concrete pavements containing microencapsulated phase change materials. Constr. Build. Mater. 2017, 147, 466–477. [Google Scholar] [CrossRef]
- Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M. The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cem. Concr. Compos. 2009, 31, 731–743. [Google Scholar] [CrossRef]
- Dehmous, M.; Franquet, E.; Lamrous, N. Mechanical and thermal characterizations of various thermal energy storage concretes including low-cost bio-sourced PCM. Energy Build. 2021, 241, 1108878. [Google Scholar] [CrossRef]
- Jaworski, M. Materiały Zmiennofazowe (PCM) w Budownictwie–Właściwości i Rodzaje. Available online: https://www.izolacje.com.pl/artykul/chemia-budowlana/157086,materialy-zmiennofazowe-pcm-w-budownictwie-wlasciwosci-i-rodzaje (accessed on 1 July 2022).
- Melcer, A.; Klugmann-Radziemska, E.; Lewandowski, W. Materiały zmiennofazowe dostępne na rynku–właściwości i zastosowanie. Przemysł Chem. 2012, 91, 1733–1742. Available online: https://docplayer.pl/49911243-Materialy-zmiennofazowe-dostepne-na-rynku-wlasciwosci-i-zastosowanie.html (accessed on 23 March 2021).
- BASF. Available online: https://www.basf.com/gb/en/media/news-releases/2013/11/PCM-Mark.html (accessed on 1 July 2022).
- Rubitherm. Available online: https://www.rubitherm.eu/ (accessed on 1 July 2022).
- Gawin, D. Modelling of Coupled Hygro-Thermal Phenomena in Building Materials and Building Components; Publishing House of Łódź Technical University: Łódź, Poland, 2000; p. 853. (In Polish) [Google Scholar]
- Gawin, D.; Majorana, C.E.; Schrefler, B.A. Numerical analysis of hygro-thermic behaviour and damage of concrete at high temperature. Mech. Cohes-Frict. Mater. 1999, 4, 37–74. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Modelling of hygrothermal behaviour and damage of concrete at temperature above the critical point of water. Int. J. Numer. Anal. Meth. Geomech. 2002, 26, 537–562. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Simulation of damage–permeability coupling in hygro-thermo-mechanical analysis of concrete at high temperature. Commun. Numer. Meth. Eng. 2002, 18, 113–119. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Comput. Methods Appl. Mech. Eng. 2003, 192, 1731–1771. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Modelling of deformations of high strength concrete at elevated temperatures. Concr. Sci. Eng. Mater. Struct. 2004, 37, 218–236. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete. Comput. Methods Appl. Mech. Eng. 2006, 195, 5707–5729. [Google Scholar] [CrossRef]
- Asadi, I.; Shafigh, P.; Hassan, Z.F.B.A.; Mahyuddin, N.B. Thermal conductivity of concrete—A review. J. Build. Eng. 2018, 20, 81–93. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Z.; Zhou, J.; Wu, K. Development of thermal energy storage concrete. Cem. Concr. Res. 2004, 34, 927–934. [Google Scholar] [CrossRef]
- Dassault Systemes Simulia Corp. Abaqus 2021 Analysis User’s Manual; Dassault Systemes Simulia Corperation: Providence, RI, USA, 2021. [Google Scholar]
- Incropera, F.; DeWitt, D. Introduction to Heat Transfer; John WHey & Sons: New York, NY, USA, 1985. [Google Scholar]
- Helowicz, A. Analiza pól temperatury wywołanych ciepłem hydratacji w masywach betonowych, Instytut inżynierii lądowej, Politechnika Wrocławska, Raport I I L serii PRE nr 1/2003,1-201, Wrocław 2003. Available online: https://www.scribd.com/document/332342495/098-Helowicz-a-Analiza-Pol-Temperatury-Wywo%C5%82anych-Ciep%C5%82em-Hydratacji-w-Masywach-Betonowych-Praca-Doktorska (accessed on 1 July 2022).
- ICiMB OSiMB in Krakow, Report, Badanie ciepła hydratacji CEM1 42,5 N. Available online: https://drive.google.com/file/d/1Z0jj6TNp-uv0Vnbmw7oXHC1VYNdU7iHT/view?usp=sharing (accessed on 1 July 2022).
- Adesina, A. Use of phase change materials in concrete: Current challenges. Renew. Energy Environ. Sustain. 2019, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Al-Yasiri, Q.; Szabó, M. Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. J. Build. Eng. 2021, 36, 102122. [Google Scholar] [CrossRef]
- Essid, N.; Eddhahak-Ouni, A.; Neji, J. Experimental and Numerical Thermal Properties Investigation of Cement-Based Materials Modified with PCM for Building Construction Use. J. Archit. Eng. 2020, 26. [Google Scholar] [CrossRef]
Group | Melting Point Range [°C] | Heat Conductivity [W/m K] | Density Range [kg/m3] | Specific Heat Range [kJ/kg] |
---|---|---|---|---|
PCM organic | 19–34 | 0.3 | 400–900 | 120–180 |
PCM inorganic | 25–35 | 0.6 | 800–1300 | 120–180 |
Micronal powder | 23–26 | 0.13 | 400 | 142 |
Rubitherm (liqid 40 °C solid 26 °C) | 31–34 | 0.2 | 770 880 | 240 |
Kind of Materials | Producer | Volume of Materials for 1 m3 of Concrete, kg | Density kg/m3 |
---|---|---|---|
Cement CEM I 42,5N | Factory Warta | 345 | 3100 |
Sand 0/2 | Dabrowa | 900 | 2650 |
Gravel 2/8 | Dabrowa | 450 | 2650 |
Gravel 8/16 | Dabrowa | 450 | 2650 |
Plasticiser BV | SIKA | 2.06 | 1150 |
Water | Tap water | 207 | 1000 |
Micronal powder (No. 2PCM, No. 3PCM) | BASF | 36 | 300–400 |
PCM liquid (No. 2PCM, No. 3PCM) | Rubithern | 10.35 | 770–880 |
Material Constants | Value |
---|---|
, density [] | 2400 |
, conductivity [] | 1.7 |
, specific heat [ | 880 |
, film coefficient [] | 10 |
, sink (ambient) temperature [] | Figure 10 |
, conductivity [] | 0.7 |
, film coefficient [] | 5 |
, specific heat [ | 500 |
, heat of hydratation | point 3.2.5. |
, heat of phase change | point 3.2.5. |
Heat Flux | ||||||
---|---|---|---|---|---|---|
1 | 0 | 23 | −1.20983 | 27.82609 | 0 | Release |
2 | 23 | 30 | 44.08163 | −2359.18 | 30,942.04 | Absorb |
3 | 30 | 50 | 1.2 | −88 | 1400 | Absorb |
SUBROUTINE HETVAL(CMNAME,TEMP,TIME,DTIME,STATEV,FLUX, 1 PREDEF,DPRED) INCLUDE ‘ABA_PARAM.INC’ CHARACTER*80 CMNAME DIMENSION TEMP(2),STATEV(*),PREDEF(*),TIME(2),FLUX(2), 1 DPRED(*) user coding to define FLUX and update STATEV RETURN END |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsino, M.; Jankowiak, T.; Jasiczak, J. Experimental and Numerical Analysis of the Concrete Maturation Process with Additive of Phase Change Materials. Materials 2022, 15, 4687. https://doi.org/10.3390/ma15134687
Hsino M, Jankowiak T, Jasiczak J. Experimental and Numerical Analysis of the Concrete Maturation Process with Additive of Phase Change Materials. Materials. 2022; 15(13):4687. https://doi.org/10.3390/ma15134687
Chicago/Turabian StyleHsino, Mahmoud, Tomasz Jankowiak, and Józef Jasiczak. 2022. "Experimental and Numerical Analysis of the Concrete Maturation Process with Additive of Phase Change Materials" Materials 15, no. 13: 4687. https://doi.org/10.3390/ma15134687
APA StyleHsino, M., Jankowiak, T., & Jasiczak, J. (2022). Experimental and Numerical Analysis of the Concrete Maturation Process with Additive of Phase Change Materials. Materials, 15(13), 4687. https://doi.org/10.3390/ma15134687