Simultaneously Improving Ductility and Stretch Formability of Mg-3Y Sheet via High Temperature Cross-Rolling and Subsequent Short-Term Annealing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure of the As-Cast Alloy
3.2. Microstructures and Micro-Texture Evolution of Alloy Sheets
3.3. Macro-Texture
3.4. Mechanical Properties
3.5. Stretch Formability
4. Conclusions
- (1)
- The morphological characteristic of β-Mg24Y5 phases with micro-nano size coexistence is formed in Mg matrix, which should be relevant to the solidification segregation behavior of Y solute.
- (2)
- The Mg-3Y-R sheet exhibits a relatively homogeneous deformed microstructure consisting of deformed grains with extensive kink bands and dispersed second phase particles. A double peak texture character appears in Mg-3Y-R sheet with a remarkably reduced pole density and a split of the texture peaks by about ±20° tilted to rolling direction 2.
- (3)
- The Mg-3Y-RA sheet presents a complete SRXed microstructure consisting of uniform equiaxed grains. The double texture disappears and a weakened multiple-peak texture appears. The maximum pole density of (0002) basal plane is further decreased from 5.2 to 3.1 MRD. The change of texture that occurs in the Mg-3Y-RA sheet should be due to the strong SRX induced by kink bands and grain boundaries.
- (4)
- Compared with the pure Mg, the Mg-3Y alloy sheet achieved a simultaneous improvement of ductility and stretch formability via high temperature cross-rolling and subsequent short-term annealing. High ductility and stretch formability are attributed to the fine dispersed β-Mg24Y5 phases, homogeneous SRXed microstructure, enhanced activity of basal <a> slip and non-basal slip, and weakening of texture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kainer, K.U. Magnesium Alloys and Technologies; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2003. [Google Scholar]
- Ion, S.E.; Humphreys, F.J.; White, S.H. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium. Acta Metall. 1982, 30, 1909–1919. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Pergamon Press: Oxford, UK, 1996. [Google Scholar]
- Pekguleryuz, M.O.; Kainer, K.U.; Arslan Kaya, A. Fundamentals of Magnesium Alloy Metallurgy; Woodhead Publishing: Cambridge, UK, 2013. [Google Scholar]
- Yang, X.; Miura, H.; Sakai, T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation. Mater. Trans. 2003, 44, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ji, Z.; Miura, H.; Sakai, T. Dynamic recrystallization and texture development during hot deformation of magnesium alloy AZ31. Trans. Nonferrous Met. Soc. China 2009, 19, 55–60. [Google Scholar] [CrossRef]
- Agnew, S.R.; Yoo, M.H.; Tomé, C.N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 2001, 49, 4277–4289. [Google Scholar] [CrossRef]
- Barnett, M.R.; Nave, M.D.; Bettles, C.J. Deformation microstructures and textures of some cold rolled Mg alloys. Mater. Sci. Eng. A 2004, 386, 205–211. [Google Scholar] [CrossRef]
- Jager, A.; Lukac, P.; Gartnerova, V.; Haloda, J.; Dopita, M. Influence of annealing on the microstructure of commercial Mg alloy AZ31 after mechanical forming. Mater. Sci. Eng. A 2006, 432, 20–25. [Google Scholar] [CrossRef]
- Yang, X.Y.; Okabe, Y.; Miura, H.; Sakai, T. Annealing of a magnesium alloy AZ31 after interrupted cold deformation. Mater. Des. 2012, 36, 626–632. [Google Scholar] [CrossRef]
- Bohlen, J.; Nürnberg, M.R.; Senn, J.W.; Letzig, D.; Agnew, S.R. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets. Acta Mater. 2007, 55, 2101–2112. [Google Scholar] [CrossRef] [Green Version]
- Hantzsche, K.; Bohlen, J.; Wendt, J.; Kainer, K.U.; Yi, S.B.; Letzig, D. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr. Mater. 2010, 63, 725–730. [Google Scholar] [CrossRef]
- Stanford, N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification-A comparative study. Mater. Sci. Eng. A 2010, 527, 2669–2677. [Google Scholar] [CrossRef]
- Stanford, N.; Barnett, M. Effect of composition on the texture and deformation behaviour of wrought Mg alloys. Scr. Mater. 2008, 58, 179–182. [Google Scholar] [CrossRef]
- Huang, X.S.; Suzuki, K.; Watazu, A.; Shigematsu, I.; Saito, N. Improvement of formability of Mg-Al-Zn alloy sheet at low temperatures using differential speed rolling. J. Alloys Compd. 2009, 470, 263–268. [Google Scholar] [CrossRef]
- Chino, Y.; Mabuchi, M.; Kishihara, R.; Hosokawa, H.; Yamada, Y.; Wen, C.E.; Shimojima, K.; Iwasaki, H. Mechanical properties and press formability at room temperature of AZ31 Mg alloy processed by single roller drive rolling. Mater. Trans. 2002, 43, 2554–2560. [Google Scholar] [CrossRef] [Green Version]
- Chino, Y.; Sassa, K.; Kamiya, A.; Mabuchi, M. Microstructure and press formability of a cross-rolled magnesium alloy sheet. Mater. Lett. 2007, 61, 1504–1506. [Google Scholar] [CrossRef]
- Song, B.; Huang, G.S.; Li, H.C.; Zhang, L.; Huang, G.J.; Pan, F.S. Texture evolution and mechanical properties of AZ31B magnesium alloy sheets processed by repeated unidirectional bending. J. Alloys Compd. 2010, 489, 475–481. [Google Scholar] [CrossRef]
- Sunaga, Y.; Tanaka, Y.; Asakawa, M.; Katoh, M.; Kobayashi, M. Effect of twin formation by repetitive bending on texture of AZ61 magnesium alloy sheet and improvement of formability. J. Jpn. Inst. Light Met. 2009, 59, 655–658. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.Q.; Chen, Z.H.; Xia, W.J. Drawability of AZ31 magnesium alloy sheet produced by equal channel angular rolling at room temperature. Mater. Charact. 2007, 58, 617–622. [Google Scholar] [CrossRef]
- Yamamoto, A.; Tsukahara, Y.; Fukumoto, S. Effects of wavy roll-forming on textures in AZ31B magnesium alloy. Mater. Trans. 2008, 49, 995–999. [Google Scholar] [CrossRef] [Green Version]
- Kohzu, M.; Kii, K.; Nagata, Y.; Nishio, H.; Higashi, K.; Inoue, H. Texture randomization of AZ31 magnesium alloy sheets for improving the cold formability by a combination of rolling and high-temperature annealing. Mater. Trans. 2010, 51, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.S.; Suzuki, K.; Saito, N. Enhancement of stretch formability of Mg-3Al-1Zn alloy sheet using hot rolling at high temperatures up to 823 K and subsequent warm rolling. Scr. Mater. 2009, 61, 445–448. [Google Scholar] [CrossRef]
- Huang, X.S.; Suzuki, K.; Chino, Y. Influences of initial texture on microstructure and stretch formability of Mg-3Al-1Zn alloy sheet obtained by a combination of high temperature and subsequent warm rolling. Scr. Mater. 2010, 63, 395–398. [Google Scholar] [CrossRef]
- Chino, Y.; Mabuchi, M. Enhanced stretch formability of Mg-Al-Zn alloy sheets rolled at high temperature (723 K). Scr. Mater. 2009, 60, 447–450. [Google Scholar] [CrossRef]
- Huang, X.S.; Suzuki, K.; Saito, N. Textures and stretch formability of Mg-6Al-1Zn magnesium alloy sheets rolled at high temperatures up to 793 K. Scr. Mater. 2009, 60, 651–654. [Google Scholar] [CrossRef]
- Huang, X.S.; Suzuki, K.; Chino, Y.; Mabuchi, M. Improvement of stretch formability of Mg-3Al-1Zn alloy sheet by high temperature rolling at finishing pass. J. Alloys Compd. 2011, 509, 7579–7584. [Google Scholar] [CrossRef]
- Huang, X.; Suzuki, K.; Chino, Y.; Mabuchi, M. Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling. J. Alloys Compd. 2015, 632, 94–102. [Google Scholar] [CrossRef]
- Huang, X.S.; Suzuki, K.; Chino, Y.; Mabuchi, M. Influence of initial texture on cold deep drawability of Mg-3Al-1Zn alloy sheets. Mater. Sci. Eng. A 2013, 565, 359–372. [Google Scholar] [CrossRef]
- Beausir, B.; Biswas, S.; Kim, D.I.; Tóth, L.S.; Suwas, S. Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling. Acta Mater. 2009, 57, 5061–5077. [Google Scholar] [CrossRef]
- Chino, Y.; Sassa, K.; Kamiya, A.; Mabuchi, M. Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes. Mater. Sci. Eng. A 2008, 473, 195–200. [Google Scholar] [CrossRef]
- Chen, T.; Chen, Z.Y.; Yi, L.; Xiong, J.Y.; Liu, C.M. Effects of texture on anisotropy of mechanical properties in annealed Mg-0.6%Zr–1.0%Cd sheets by unidirectional and cross rolling. Mater. Sci. Eng. A 2014, 615, 324–330. [Google Scholar] [CrossRef]
- Brown, D.W.; Agnew, S.R.; Bourke, M.A.M.; Holden, T.M.; Vogel, S.C.; Tomé, C.N. Internal strain and texture evolution during deformation twinning in magnesium. Mater. Sci. Eng. A 2005, 399, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Al-Samman, T.; Gottstein, G. Mechanical properties and anisotropy of ME20 magnesium sheet produced by unidirectional and cross rolling. Mater. Des. 2011, 32, 4385–4393. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, C.; Long, C.G.; Chen, J.; Tang, K.; Zhang, M.J.; Peng, P. Phase stability, elastic properties and electronic structures of Mg-Y intermetallics from first-principles calculations. J. Magnes. Alloy. 2015, 3, 127–133. [Google Scholar] [CrossRef] [Green Version]
- StJohn, D.H.; Qian, M.; Easton, M.A.; Cao, P.; Hildebrand, Z. Grain refinement of magnesium alloys. Metall. Mater. Tran. A 2005, 36, 1669–1679. [Google Scholar] [CrossRef]
- Lee, Y.C.; Dahle, A.K.; StJohn, D.H. The role of solute in grain refinement of magnesium. Metall. Mater. Tran. A 2000, 31, 2895–2906. [Google Scholar] [CrossRef]
- Shi, B.Q.; Chen, R.S.; Ke, W. Effects of yttrium and zinc on the texture, microstructure and tensile properties of hot-rolled magnesium plates. Mater. Sci. Eng. A 2013, 560, 62–70. [Google Scholar] [CrossRef]
- Yu, Z.J.; Xu, C.; Meng, J.; Zhang, X.H.; Kamadoa, S. Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions. Mater. Sci. Eng. A. 2018, 713, 234–243. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.D.; Liu, G.P.; Guo, W.; Jiang, H.Y.; Ding, W.J. Effect of SiC particles and the particulate size on the hot deformation and processing map of AZ91 magnesium matrix composites. Mater. Sci. Eng. A. 2017, 707, 315–324. [Google Scholar] [CrossRef]
- Christian, J.W.; Mahajan, S. Deformation twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Yang, X.Y.; Jiang, Y.P. Morphology and crystallographic characteristics of deformation bands in Mg alloy under hot deformation. Acta Metall. Sin. 2010, 46, 451–457. [Google Scholar] [CrossRef]
- Zhou, B.; Sui, M.L. Generation and interaction mechanism of tension kink band in AZ31 magnesium alloy. Acta Metall. Sin. 2019, 55, 1512–1518. [Google Scholar]
- Matsumoto, T.; Yamasaki, M.; Hagihara, K.; Kawamura, Y. Configuration of dislocations in low-angle kink boundaries formed in a single crystalline long-period stacking ordered Mg-Zn-Y alloy. Acta Mater. 2018, 151, 112–124. [Google Scholar] [CrossRef]
- Hong, S.G.; Park, S.H.; Lee, C.S. Role of {10-12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 2010, 58, 5873–5885. [Google Scholar] [CrossRef]
- Al-Samman, T.; Gottstein, G. Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms. Mater. Sci. Eng. A 2008, 488, 406–414. [Google Scholar] [CrossRef]
- Wright, S.I.; Nowell, M.M.; Field, D.P. A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 2011, 17, 316–329. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, S.H.; Lee, J.U.; You, B.S.; Park, S.H. Evolution of high-cycle fatigue behavior of extruded AZ91 alloy by artificial cooling during extrusion. Mater. Sci. Eng. A 2017, 707, 620–628. [Google Scholar] [CrossRef]
- Al-Samman, T.; Molodov, K.D.; Molodov, D.A.; Gottstein, G.; Suwas, S. Softening and dynamic recrystallization in magnesium single crystals during c-axis compression. Acta Mater. 2012, 60, 537–545. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Xiao, Z.; Zhang, D.; Wang, J.; Sakai, T. Annealing behavior of a cast Mg-Gd-Y-Zr alloy with necklace fine grains developed under hot deformation. Mater. Sci. Eng. A 2017, 688, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.X.; Jin, L.; Wang, F.H.; Sun, J.; Zhang, Z.Y.; Ding, W.J.; Dong, J. Microstructure and texture evolution during hot rolling and subsequent annealing of Mg-1Gd alloy. Mater. Sci. Eng. A 2013, 582, 194–202. [Google Scholar] [CrossRef]
- Sandlöbes, S.; Friák, M.; Zaefferer, S.; Dick, A.; Yi, S.; Letzig, D.; Pei, Z.; Zhu, L.F.; Neugebauer, J.; Raabe, D. The relation between ductility and stacking fault energies in Mg and Mg-Y alloys. Acta Mater. 2012, 60, 3011–3021. [Google Scholar] [CrossRef]
- Sandlöbes, S.; Zaefferer, S.; Schestakow, I.; Yi, S.; Gonzalez-Martinez, R. On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys. Acta Mater. 2011, 59, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013, 61, 818–843. [Google Scholar] [CrossRef]
- Miao, Q.; Hu, L.X.; Wang, G.J.; Wang, E.R. Fabrication of excellent mechanical properties AZ31 magnesium alloy sheets by conventional rolling and subsequent annealing. Mater. Sci. Eng. A 2011, 528, 6694–6701. [Google Scholar] [CrossRef]
- Agnew, S.R.; Duygulu, Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 2005, 21, 1161–1193. [Google Scholar] [CrossRef]
- Wusatowska-Sarnek, A.M.; Miura, H.; Sakai, T. Influence of deformation temperature on microstructure evolution and static recrystallization of polycrystalline copper. Mater. Trans. 2001, 42, 2452–2459. [Google Scholar] [CrossRef]
- Huang, X.S.; Suzuki, K.; Chino, Y. Annealing behaviour of Mg-3Al-1Zn alloy sheet obtained by a combination of high-temperature rolling and subsequent warm rolling. J. Alloys Compd. 2011, 509, 4854–4860. [Google Scholar] [CrossRef]
- Suh, B.C.; Shim, M.S.; Shin, K.S.; Kim, N.J. Current issues in magnesium sheet alloys: Where do we go from here? Scr. Mater. 2014, 84–85, 1–6. [Google Scholar] [CrossRef]
- Bian, M.Z.; Sasaki, T.T.; Suh, B.C.; Nakata, T.; Kamado, S.; Hono, K. A heat-treatable Mg-Al-Ca-Mn-Zn sheet alloy with good room temperature formability. Scr. Mater. 2017, 138, 151–155. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, X.D.; Ma, Y.; Li, Y.M.; Yu, Y.Q.; Wei, G.B. Microstructure and mechanical properties of Mg-9Li-3Al-xGd alloys. Mater. Sci. Technol. 2015, 31, 1035–1041. [Google Scholar] [CrossRef]
- Stanford, N.; Barnett, M.R. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 2008, 496, 399–408. [Google Scholar] [CrossRef]
- Stanford, N.; Atwell, D.; Barnett, M.R. The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 2010, 58, 6773–6783. [Google Scholar] [CrossRef]
- Yukutake, E.; Kaneko, J.; Sugamata, M. Anisotropy and non-uniformity in plastic behavior of AZ31 magnesium alloy plates. Mater. Trans. 2003, 44, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Iwanaga, K.; Tashiro, H.; Okamoto, H.; Shimizu, K. Improvement of formability from room temperature to warm temperature in AZ31 magnesium alloy. J. Mater. Process. Technol. 2004, 155–156, 1313–1316. [Google Scholar] [CrossRef]
- Chino, Y.; Sassa, K.; Mabuchi, M. Texture and stretch formability of Mg-1.5 mass% Zn-0.2 mass% Ce alloy rolled at different rolling temperatures. Mater. Trans. 2008, 49, 2916–2918. [Google Scholar] [CrossRef] [Green Version]
Materials | Y | Mg |
---|---|---|
Mg | - | Bal. |
Mg-3Y | 2.90 | Bal. |
Sheets | Average Schmid Factor (SF) | |||
---|---|---|---|---|
Basal <a> (0001)<11-20> | Prismatic <a> (1-100)<11-20> | Pyramidal <a> (1-101)<11-20> | Pyramidal <c+a> (11-22)<11-2-3> | |
Mg-3Y-R | 0.21 | 0.44 | 0.43 | 0.40 |
Mg-3Y-RA | 0.31 | 0.35 | 0.42 | 0.33 |
Mg-3Y-R Sheet | Mg-3Y-RA Sheet | ||
---|---|---|---|
Symbol | Texture Components | Symbol | Texture Components |
D | {01-11}<2-1-10> | ||
E | {01-11}<8-7-16> | ||
A | {01-17}<-1-231> | F | {01-13}<0-332> |
B | {0001}<-1-231> | G | {11-26}<1-542> |
C | {10-17}<-1-231> | H | {10-11}<1-210> |
I | {10-11}<0-111> | ||
J | {10-13}<-4-153> |
Sheets | YS (MPa) | UTS (MPa) | FE (%) |
---|---|---|---|
Mg-R | 142 ± 5 | 196 ± 7 | 6.4 ± 0.3 |
Mg-RA | 140 ± 3 | 187 ± 5 | 4.6 ± 0.4 |
Mg-3Y-R | 202 ± 4 | 228 ± 6 | 18.6 ± 0.6 |
Mg-3Y-RA | 108 ± 6 | 180 ± 8 | 25.6 ± 0.8 |
Sheets | Punch Force (kN) | IE (mm) |
---|---|---|
Mg-R | 1.33 ± 0.03 | 3.3 ± 0.04 |
Mg-RA | 1.19 ± 0.02 | 2.8 ± 0.06 |
Mg-3Y-R | 2.02 ± 0.03 | 4.2 ± 0.08 |
Mg-3Y-RA | 4.61 ± 0.04 | 6.2 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, C.; Fu, Y.; Xu, Y.; Shao, Z.; Chen, X.; Zhu, X. Simultaneously Improving Ductility and Stretch Formability of Mg-3Y Sheet via High Temperature Cross-Rolling and Subsequent Short-Term Annealing. Materials 2022, 15, 4712. https://doi.org/10.3390/ma15134712
Wang Y, Liu C, Fu Y, Xu Y, Shao Z, Chen X, Zhu X. Simultaneously Improving Ductility and Stretch Formability of Mg-3Y Sheet via High Temperature Cross-Rolling and Subsequent Short-Term Annealing. Materials. 2022; 15(13):4712. https://doi.org/10.3390/ma15134712
Chicago/Turabian StyleWang, Yinyang, Chen Liu, Yu Fu, Yongdong Xu, Zhiwen Shao, Xiaohu Chen, and Xiurong Zhu. 2022. "Simultaneously Improving Ductility and Stretch Formability of Mg-3Y Sheet via High Temperature Cross-Rolling and Subsequent Short-Term Annealing" Materials 15, no. 13: 4712. https://doi.org/10.3390/ma15134712
APA StyleWang, Y., Liu, C., Fu, Y., Xu, Y., Shao, Z., Chen, X., & Zhu, X. (2022). Simultaneously Improving Ductility and Stretch Formability of Mg-3Y Sheet via High Temperature Cross-Rolling and Subsequent Short-Term Annealing. Materials, 15(13), 4712. https://doi.org/10.3390/ma15134712