Stability, Energetic, and Reactivity Properties of NiPd Alloy Clusters Deposited on Graphene with Defects: A Density Functional Theory Study
Abstract
:1. Introduction
2. Computational Details
3. Results
3.1. Structures and Properties of NinPdn (n = 1−3) Clusters
3.2. Properties of NinPdn (n = 1−3) Clusters Deposited Graphene with Different Defects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Flores, A.; Cruz-Martinez, H.; Solorza-Feria, O.; Calaminici, P. A first-principles study of NinPdn (n = 1–5) clusters. J. Mol. Model. 2017, 23, 161. [Google Scholar] [CrossRef]
- Baletto, F.; Ferrando, R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 2005, 77, 371–423. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Sosa, L.; Cruz-Martinez, H.; Solorza-Feria, O.; Calaminici, P. Nickel and copper doped palladium clusters from a first-principles perspective. Int. J. Quantum Chem. 2019, 119, e26013. [Google Scholar] [CrossRef]
- Cruz-Martinez, H.; Lopez-Sosa, L.; Solorza-Feria, O.; Calaminici, P. First-principles investigation of adsorption and dissociation of molecular oxygen on pure Pd, Ni-doped Pd and NiPd alloy clusters. Int. J. Hydrogen Energy 2017, 42, 30310–30317. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. Models of Molecular Structures of Hexa-Nuclear AlnFem Metal Clusters (n + m = 6): DFT Quantum-Chemical Design. Materials 2021, 14, 597. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Cervantes-Flores, A.; Solorza-Feria, O.; Medina, D.I.; Calaminici, P. On the growth behavior, structures, energy, and magnetic properties of bimetallic MnPdn (M = Co, Ni; n = 1–10) clusters. Theor. Chem. Acc. 2021, 140, 45. [Google Scholar] [CrossRef]
- Galindo-Uribe, C.D.; Calaminici, P.; Cruz-Martínez, H.; Cruz-Olvera, D.; Solorza-Feria, O. First-principle study of the structures, growth pattern, and properties of (Pt3Cu)n, n = 1–9, clusters. J. Chem. Phys. 2021, 154, 154302. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, O.V.; Chachkov, D.V. Quantum-Chemical Consideration of Al2M2 Tetranuclear Metal Clusters (M–3d-Element): Molecular/Electronic Structures and Thermodynamics. Materials 2021, 14, 6836. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Solorza-Feria, O.; Calaminici, P.; Medina, D.I. On the structural, energetic, and magnetic properties of M@ Pd (M= Co, Ni, and Cu) core–shell nanoclusters and their comparison with pure Pd nanoclusters. J. Magn. Magn. Mater. 2020, 508, 166844. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Tellez-Cruz, M.M.; Solorza-Feria, O.; Calaminici, P.; Medina, D.I. Catalytic activity trends from pure Pd nanoclusters to M@PdPt (M = Co, Ni, and Cu) core-shell nanoclusters for the oxygen reduction reaction: A first-principles analysis. Int. J. Hydrogen Energy 2020, 45, 13738–13745. [Google Scholar] [CrossRef]
- Loza, K.; Heggen, M.; Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv. Funct. Mater. 2020, 30, 1909260. [Google Scholar] [CrossRef] [Green Version]
- Srinoi, P.; Chen, Y.T.; Vittur, V.; Marquez, M.D.; Lee, T.R. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological applications. Appl. Sci. 2018, 8, 1106. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Martínez, H.; Rojas-Chávez, H.; Matadamas-Ortiz, P.T.; Ortiz-Herrera, J.C.; López-Chávez, E.; Solorza-Feria, O.; Medina, D.I. Current progress of Pt-based ORR electrocatalysts for PEMFCs: An integrated view combining theory and experiment. Mater. Today Phys. 2021, 19, 100406. [Google Scholar] [CrossRef]
- Shen, S.Y.; Zhao, T.S.; Xu, J.B.; Li, Y.S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 2010, 195, 1001–1006. [Google Scholar] [CrossRef]
- Qi, Z.; Geng, H.; Wang, X.; Zhao, C.; Ji, H.; Zhang, C.; Xu, J.; Zhang, Z. Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. J. Power Sources 2011, 196, 5823–5828. [Google Scholar] [CrossRef]
- da Silva, E.L.; Cuña, A.; Plascencia, C.R.; Radtke, C.; Tancredi, N.; de Fraga Malfatti, C. Clean synthesis of biocarbon-supported Ni@Pd core–shell particles via hydrothermal method for direct ethanol fuel cell anode application. Clean Technol. Environ. Policy 2020, 22, 259–268. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Mukherjee, P.; Kumar Bhattachrya, S. Palladium and palladium–copper alloy nano particles as superior catalyst for electrochemical oxidation of methanol for fuel cell applications. Int. J. Hydrogen Energy 2016, 41, 17072–17083. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Tellez-Cruz, M.M.; Guerrero-Gutiérrez, O.X.; Ramírez-Herrera, C.A.; Salinas-Juárez, M.G.; Velázquez-Osorio, A.; Solorza-Feria, O. Mexican contributions for the improvement of electrocatalytic properties for the oxygen reduction reaction in PEM fuel cells. Int. J. Hydrogen Energy 2019, 44, 12477–12491. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Guerra-Cabrera, W.; Flores-Rojas, E.; Ruiz-Villalobos, D.; Rojas-Chávez, H.; Peña-Castañeda, Y.A.; Medina, D.I. Pt-free metal nanocatalysts for the oxygen reduction reaction combining experiment and theory: An overview. Molecules 2021, 26, 6689. [Google Scholar] [CrossRef]
- Martínez-Espinosa, J.A.; Cruz-Martínez, H.; Calaminici, P.; Medina, D.I. Structures and properties of Co13−xCux (x = 0–13) nanoclusters and their interaction with pyridinic N3-doped graphene nanoflake. Phys. E 2021, 134, 114858. [Google Scholar] [CrossRef]
- Rojas-Chávez, H.; Cruz-Martínez, H.; Flores-Rojas, E.; Juárez-García, J.M.; González-Domínguez, J.L.; Daneu, N.; Santoyo-Salazar, J. The mechanochemical synthesis of PbTe nanostructures: Following the Ostwald ripening effect during milling. Phys. Chem. Chem. Phys. 2018, 20, 27082–27092. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Kong, X.K.; Chen, C.L.; Chen, Q.W. Doped graphene for metal-free catalysis. Chem. Soc. Rev. 2014, 43, 2841–2857. [Google Scholar] [CrossRef] [PubMed]
- Montejo-Alvaro, F.; Rojas-Chávez, H.; Román-Doval, R.; Mtz-Enriquez, A.I.; Cruz-Martínez, H.; Medina, D.I. Stability of Pd clusters supported on pristine, B-doped, and defective graphene quantum dots, and their reactivity toward oxygen adsorption: A DFT analysis. Solid State Sci. 2019, 93, 55–61. [Google Scholar] [CrossRef]
- Cruz-Martínez, H.; Rojas-Chávez, H.; Montejo-Alvaro, F.; Peña-Castañeda, Y.A.; Matadamas-Ortiz, P.T.; Medina, D.I. Recent Developments in Graphene-Based Toxic Gas Sensors: A Theoretical Overview. Sensors 2021, 21, 1992. [Google Scholar] [CrossRef]
- Ortiz-Medina, J.; Wang, Z.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X.; Terrones, M.; Endo, M. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv. Mater. 2019, 31, 1805717. [Google Scholar] [CrossRef]
- Valdés-Madrigal, M.A.; Montejo-Alvaro, F.; Cernas-Ruiz, A.S.; Rojas-Chávez, H.; Román-Doval, R.; Cruz-Martinez, H.; Medina, D.I. Role of Defect Engineering and Surface Functionalization in the Design of Carbon Nanotube-Based Nitrogen Oxide Sensors. Int. J. Mol. Sci. 2021, 22, 12968. [Google Scholar] [CrossRef]
- Montejo-Alvaro, F.; González-Quijano, D.; Valmont-Pineda, J.A.; Rojas-Chávez, H.; Juárez-García, J.M.; Medina, D.I.; Cruz-Martínez, H. CO2 Adsorption on PtCu Sub-Nanoclusters Deposited on Pyridinic N-Doped Graphene: A DFT Investigation. Materials 2021, 14, 7619. [Google Scholar] [CrossRef]
- Zhou, X.; Chu, W.; Sun, W.; Zhou, Y.; Xue, Y. Enhanced interaction of nickel clusters with pyridinic-N (B) doped graphene using DFT simulation. Comput. Theor. Chem. 2017, 1120, 8–16. [Google Scholar] [CrossRef]
- Jalili, S.; Goliaei, E.M.; Schofield, J. Silver cluster supported on nitrogen-doped graphene as an electrocatalyst with high activity and stability for oxygen reduction reaction. Int. J. Hydrogen Energy 2017, 42, 14522–14533. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, Y.; Chen, G.; Zhao, J. Theoretical insights into the energetics and electronic properties of MPt12 (M= Fe, Co, Ni, Cu, and Pd) nanoparticles supported by N-doped defective graphene. Appl. Surf. Sci. 2017, 397, 199–205. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S. Theoretical insights into the activation of O2 by Pt single atom and Pt4 nanocluster on functionalized graphene support: Critical role of Pt positive polarized charges. Carbon 2017, 115, 11–17. [Google Scholar] [CrossRef]
- Yang, Y.; Reber, A.C.; Gilliland, S.E., III; Castano, C.E.; Gupton, B.F.; Khanna, S.N. Donor/acceptor concepts for developing efficient suzuki cross-coupling catalysts using graphene-supported Ni, Cu, Fe, Pd, and bimetallic Pd/Ni clusters. J. Phys. Chem. C 2018, 122, 25396–25403. [Google Scholar] [CrossRef]
- Sahoo, S.; Gruner, M.E.; Khanna, S.N.; Entel, P. First-principles studies on graphene-supported transition metal clusters. J. Chem. Phys. 2014, 141, 074707. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, X.; Ma, Z.; Pei, Y. Structure and Catalytic Activity of Gold Clusters Supported on Nitrogen-Doped Graphene. J. Phys. Chem. C 2021, 125, 5006–5019. [Google Scholar] [CrossRef]
- Liu, X.; Meng, C.; Han, Y. Defective graphene supported MPd12 (M = Fe, Co, Ni, Cu, Zn, Pd) nanoparticles as potential oxygen reduction electrocatalysts: A first-principles study. J. Phys. Chem. C 2013, 117, 1350–1357. [Google Scholar] [CrossRef]
- Wu, S.Y.; Chen, H.T. Structure, Bonding, and Catalytic Properties of Defect Graphene Coordinated Pd–Ni Nanoparticles. J. Phys. Chem. C 2017, 121, 14668–14677. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.P.; Vargas-Hernández, C.N.; Cruz-Martínez, H.; Medina, D.I. Stability, magnetic, energetic, and reactivity properties of icosahedral M@Pd12 (M = Fe, Co, Ni, and Cu) core-shell nanoparticles supported on pyridinic N3-doped graphene. Solid State Sci. 2021, 112, 106483. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip Rev. Comput Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, W. Comment on “Generalized Gradient Approximation Made Simple”. Phys. Rev. Lett. 1998, 80, 890. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef] [PubMed]
- Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Saeed, M.; Mehboob, M.Y.; Khan, S.U.; Khan, M.U.; Adnan, M.; Ahmed, M.; Iqbal, J.; Ayub, K. Density functional theory study of palladium cluster adsorption on a graphene support. RSC Adv. 2020, 10, 20595–20607. [Google Scholar] [CrossRef]
- Yuan, D.W.; Liu, C.; Liu, Z.R. Structures and catalytic properties of PdmAun (m + n = 7) bimetallic clusters supported on graphene by first-principles studies. Phys. Lett. A 2014, 378, 408–415. [Google Scholar] [CrossRef]
- Gao, Z.; Li, A.; Li, X.; Liu, X.; Ma, C.; Yang, J.; Yang, W.; Li, H. The adsorption and activation of oxygen molecule on nickel clusters doped graphene-based support by DFT. Mol. Catal. 2019, 477, 110547. [Google Scholar] [CrossRef]
- Gao, Z.; Li, A.; Liu, X.; Ma, C.; Li, X.; Yang, W.; Ding, X. Density functional study of the adsorption of NO on Nin (n = 1, 2, 3 and 4) clusters doped functionalized graphene support. Appl. Surf. Sci. 2019, 481, 940–950. [Google Scholar] [CrossRef]
- Montejo-Alvaro, F.; Oliva, J.; Zarate, A.; Herrera-Trejo, M.; Hdz-García, H.M.; Mtz-Enriquez, A.I. Icosahedral transition metal clusters (M13, M = Fe, Ni, and Cu) adsorbed on graphene quantum dots, a DFT study. Phys. E 2019, 110, 52–58. [Google Scholar] [CrossRef]
System | BE/n | VIP (eV) | VEA (eV) | η (eV) |
---|---|---|---|---|
NiPd | 1.22 | 7.52 | 0.62 | 3.45 |
Ni2Pd2 | 2.05 | 5.89 | 0.73 | 2.58 |
Ni3Pd3 | 2.47 | 6.20 | 1.57 | 2.32 |
System | Eb (eV) | Charge (e) | VIP (eV) | VEA (eV) | η (eV) |
---|---|---|---|---|---|
NiPd/C53H18 | −6.47 | 0.50 | 5.64 | 1.83 | 1.91 |
NiPd/C52H18N | −4.72 | 0.65 | 5.50 | 1.78 | 1.86 |
NiPd/C51H18N2 | −5.26 | 0.66 | 5.15 | 1.67 | 1.74 |
NiPd/C50H18N3 | −4.05 | 0.73 | 4.85 | 1.74 | 1.56 |
Ni2Pd2/C53H18 | −6.86 | 0.65 | 5.49 | 1.97 | 1.76 |
Ni2Pd2/C52H18N | −4.92 | 0.65 | 5.20 | 2.13 | 1.51 |
Ni2Pd2/C51H18N2 | −5.54 | 0.75 | 5.17 | 2.04 | 1.54 |
Ni2Pd2/C50H18N3 | −4.65 | 0.73 | 5.37 | 1.99 | 1.69 |
Ni3Pd3/C53H18 | −6.22 | 0.70 | 5.42 | 2.28 | 1.57 |
Ni3Pd3/C52H18N | −4.43 | 0.70 | 5.17 | 2.13 | 1.54 |
Ni3Pd3/C51H18N2 | −4.79 | 0.81 | 4.99 | 1.94 | 1.52 |
Ni3Pd3/C50H18N3 | −4.26 | 0.82 | 5.09 | 1.91 | 1.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Vargas, A.; Vásquez-López, A.; Antonio-Ruiz, C.D.; Cruz-Martínez, H.; Medina, D.I.; Montejo-Alvaro, F. Stability, Energetic, and Reactivity Properties of NiPd Alloy Clusters Deposited on Graphene with Defects: A Density Functional Theory Study. Materials 2022, 15, 4710. https://doi.org/10.3390/ma15134710
Martínez-Vargas A, Vásquez-López A, Antonio-Ruiz CD, Cruz-Martínez H, Medina DI, Montejo-Alvaro F. Stability, Energetic, and Reactivity Properties of NiPd Alloy Clusters Deposited on Graphene with Defects: A Density Functional Theory Study. Materials. 2022; 15(13):4710. https://doi.org/10.3390/ma15134710
Chicago/Turabian StyleMartínez-Vargas, Adrián, Alfonso Vásquez-López, Carlos D. Antonio-Ruiz, Heriberto Cruz-Martínez, Dora I. Medina, and Fernando Montejo-Alvaro. 2022. "Stability, Energetic, and Reactivity Properties of NiPd Alloy Clusters Deposited on Graphene with Defects: A Density Functional Theory Study" Materials 15, no. 13: 4710. https://doi.org/10.3390/ma15134710
APA StyleMartínez-Vargas, A., Vásquez-López, A., Antonio-Ruiz, C. D., Cruz-Martínez, H., Medina, D. I., & Montejo-Alvaro, F. (2022). Stability, Energetic, and Reactivity Properties of NiPd Alloy Clusters Deposited on Graphene with Defects: A Density Functional Theory Study. Materials, 15(13), 4710. https://doi.org/10.3390/ma15134710