Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective
Abstract
:1. Introduction
1.1. Overall Water Splitting
Thermodynamic Requirements
1.2. Reaction Kinetics
2. Quantification of Essential Photocatalytic Water Splitting Properties
2.1. Overpotential
Band Alignments and Overpotentials of 2D Materials
2D Materials | HER Over Potential | HER Required External Potential | OER Over Potential | OER Required External Potential | Ref. |
---|---|---|---|---|---|
Cu2ZnSnS4 (112) | 0.74 | - | 1.73 | 0.50 | [85] |
Cu2ZnSnS4 | 0.0 | - | 1.58 | 0.35 | [85] |
GaAs | 0.0 | 0.0 | 2.65 | 1.39 | [86] |
C3N5 bilayer | 0.74 | 0 | 1.94 | 0.69 | [87] |
Penta-SiAs2 | 0.72 | 0 | 1.45 | 0 | [88] |
β-GeSe | 1.39 | 0.13 | 2.56 | 0.49 | [89] |
BeN2 | 0.72 | −0.52 | 2.06 | 0.83 | [90,91,92] |
β-SnSe | 1.44 | 0.16 | 1.95 | 0.28 | [89] |
β-AuS | 0.24 | 0.16 | 2.22 | 0.10 | [93] |
PdSeO3 | 0.98 | 0 | 1.63 | 0 | [94] |
AgBiP2Se6 (PE) | 1.33 | 1.06 | 2.12 | 0.19 | [95] |
AgBiP2Se6 (FE) | 1.71 | 1.62 | 2.17 | 0 | [95] |
PdSe2 | 1.17 | - | 2.15 | - | [96] |
LiGaS2 bilayer | 1.15 | 0 | 2.08 | 0 | [97] |
RhTeCl | 1.14 | 0.30 | 1.55 | 0.32 | [98] |
CuCl | 0.95 | - | 2.76 | 1.53 | [99] |
CuCl (111) | −0.56 | - | 2.84 | 1.61 | [99] |
C6N7 | 0.56 | - | 1.67 | 0.44 | [100] |
Pd3P2S8 | - | - | 2.77 | 1.07 | [101] |
SiP2S6 | 0.12 | 0 | 2.000 | 0 | [102] |
g-CN | 1.15 | - | 2.16 | 0.93 | [103] |
g-C3N4 | - | - | 2.68 | 1.45 | [104] |
β-PdSe2 | 1.54 | 0.31 | 1.58 | 0.35 | [105] |
C3S | 0.33 | 0.07 | 3.76 | 2.03 | [106] |
SiP2 | 1.7 | 0.83 | 1.50 | 0 | [107] |
Janus WSSe | 0 | 0.58 | 2.39 | 0 | [108] |
Janus Pd4S3Se3 | 0.77 | - | 2.99 | 1.76 | [109] |
Janus Pd4S3Te3 | 0.18 | - | 2.50 | 1.27 | [109] |
Janus Pd4Se3Te3 | 0.73 | - | 2.83 | 1.60 | [109] |
2D Heterostructure | HER Over Potential | HER Required External Potential | OER Over Potential | OER Required External Potential | Ref. |
---|---|---|---|---|---|
PtS2/Are | 0 | 0 | 2.00 | 0 | [110] |
P4O2/Black Phosphorus | 0.85 β-site | 0.0 | 2.65 β-site | 0.0 | [111] |
P4O2/Black Phosphorus | 1.11 α-site | 0.04 | 3.15 α-site | 0.33 | [111] |
In2SeS/g-C3N4 | - | - | 1.56 | 0.74 | [112] |
AlP3−GaP3 | - | - | 1.65 P1 site | 0.37 | [113] |
CuInP2S6/Mn2P2S6 | 1.68 | 0.14 | 2.36 | 0.13 | [114] |
arsenene/g-C3N4 | - | - | 2.72 | 1.03 | [115] |
C2N/GaTe | - | - | 2.70 | 1.47 | [116] |
C2N/InTe | - | - | 2.17 | 0.94 | [116] |
MoSe2/SnSe2 | −0.24 | 0 | 2.06 | 0 | [117] |
WSe2/SnSe2 | −0.23 | 0 | 2.04 | 0 | [117] |
C2N/WS2 | - | - | 3.04 | 1.81 | [118] |
GeSe/SSn | 0.8 | 0 | 1.94 | 0 | [119] |
2.2. Exciton Binding Energy
2.3. Solar-to-Hydrogen (STH) Efficiency
3. Engineering of 2D Materials for Enhanced Photocatalytic Surface Activity
3.1. Single-Atom Catalysts (SACs)
3.2. Defects Engineering
3.3. Strain Engineering
3.4. Intrinsic Electric Fields
3.4.1. Janus Structures
3.4.2. Heterojunctions
Type-II van der Waals Heterostructures (vdWH)
Z-Scheme Heterostructures
3.5. Multilayer Configurations
4. Edge-Modification in Nanoribbons
5. The Effect of pH in Overall Water Splitting
5.1. Catalysis in Acidic Media
5.2. Catalysis in Alkaline Media
6. Conclusions, Perspectives, and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, Y.; Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580. [Google Scholar] [CrossRef] [PubMed]
- Kannan, N.; Vakeesan, D. Solar energy for future world: A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Safari, A. A review on solar energy use in industries. Renew. Sustain. Energy Rev. 2011, 15, 1777–1790. [Google Scholar] [CrossRef]
- Jakhar, M.; Singh, J.; Kumar, A.; Pandey, R. First-Principles Study of the Hexagonal T-Phase PdSe2 Monolayer and Its Application in Solar Cells. J. Phys. Chem. C 2020, 124, 26565–26571. [Google Scholar] [CrossRef]
- Lewis, N.S. Toward cost-effective solar energy use. Science 2007, 315, 798–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faraji, M.; Yousefi, M.; Yousefzadeh, S.; Zirak, M.; Naseri, N.; Jeon, T.H.; Choi, W.; Moshfegh, A.Z. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 2019, 12, 59–95. [Google Scholar] [CrossRef]
- Malato, S.; Blanco, J.; Vidal, A.; Richter, C. Photocatalysis with solar energy at a pilot-plant scale: An overview. Appl. Catal. B Environ. 2002, 37, 1–15. [Google Scholar] [CrossRef]
- Blanco, J.; Malato, S.; Fernández-Ibañez, P.; Alarcón, D.; Gernjak, W.; Maldonado, M. Review of feasible solar energy applications to water processes. Renew. Sustain. Energy Rev. 2009, 13, 1437–1445. [Google Scholar] [CrossRef]
- Villa, K.; Galán-Mascarós, J.R.; López, N.; Palomares, E. Photocatalytic water splitting: Advantages and challenges. Sustain. Energy Fuels 2021, 5, 4560–4569. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Weber, A.Z.; Ardo, S.; Berger, A.; Chen, Y.; Coridan, R.; Fountaine, K.T.; Haussener, S.; Hu, S.; Liu, R. Modeling, simulation, and implementation of solar-driven water-splitting devices. Angew. Chem. Int. Ed. 2016, 55, 12974–12988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takanabe, K. Photocatalytic water splitting: Quantitative approaches toward photocatalyst by design. ACS Catal. 2017, 7, 8006–8022. [Google Scholar] [CrossRef]
- Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050. [Google Scholar] [CrossRef]
- Fu, C.F.; Wu, X.; Yang, J. Material design for photocatalytic water splitting from a theoretical perspective. Adv. Mater. 2018, 30, 1802106. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef] [PubMed]
- Schultz, D.M.; Yoon, T.P. Solar Synthesis: Prospects in Visible Light Photocatalysis. Science 2014, 343, 1239176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Zhang, S.; Shi, R.; Waterhouse, G.I.; Tang, J.; Zhang, T. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91. [Google Scholar] [CrossRef]
- Suntivich, J.; May, K.J.; Gasteiger, H.A.; Goodenough, J.B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385. [Google Scholar] [CrossRef] [PubMed]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, T.; Sakata, Y.; Imamura, H. Photocatalytic decomposition of H2O into H2 and O2 over Ga2O3 loaded with NiO. Chem. Lett. 2004, 33, 726–727. [Google Scholar] [CrossRef]
- Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127, 8286–8287. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shao, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 2018, 6, 19912–19933. [Google Scholar] [CrossRef]
- Sun, S.; Hisatomi, T.; Wang, Q.; Chen, S.; Ma, G.; Liu, J.; Nandy, S.; Minegishi, T.; Katayama, M.; Domen, K. Efficient redox-mediator-free Z-scheme water splitting employing oxysulfide photocatalysts under visible light. ACS Catal. 2018, 8, 1690–1696. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Kubacka, A.; Fernandez-Garcia, M.; Colon, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614. [Google Scholar] [CrossRef]
- Singh, D.; Gupta, S.K.; Sonvane, Y.; Kumar, A.; Ahuja, R. 2D-HfS2 as an efficient photocatalyst for water splitting. Catal. Sci. Technol. 2016, 6, 6605–6614. [Google Scholar] [CrossRef]
- Zhang, Z.; Penev, E.S.; Yakobson, B.I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763. [Google Scholar] [CrossRef]
- Galbiati, M.; Motta, N.; De Crescenzi, M.; Camilli, L. Group-IV 2D materials beyond graphene on nonmetal substrates: Challenges, recent progress, and future perspectives. Appl. Phys. Rev. 2019, 6, 041310. [Google Scholar] [CrossRef]
- Wu, Z.; Hao, J. Electrical transport properties in group-V elemental ultrathin 2D layers. NPJ 2D Mater. Appl. 2020, 4, 4. [Google Scholar] [CrossRef]
- Lozovoy, K.A.; Dirko, V.V.; Vinarskiy, V.P.; Kokhanenko, A.P.; Voitsekhovskii, A.V.; Akimenko, N.Y. Two-dimensional materials of group IV-A: Latest advances in epitaxial methods of growth. Russ. Phys. J. 2022, 64, 1583–1591. [Google Scholar] [CrossRef]
- Geng, D.; Yang, H.Y. Recent advances in growth of novel 2D materials: Beyond graphene and transition metal dichalcogenides. Adv. Mater. 2018, 30, 1800865. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Xiong, J.; Li, H.; Liu, Z. Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Adv. Mater. 2018, 30, 1704548. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, X.; Xie, Y. Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Mater. Sci. Eng. R: Rep. 2018, 130, 1–39. [Google Scholar] [CrossRef]
- Kaur, S.; Kumar, A.; Srivastava, S.; Tankeshwar, K.; Pandey, R. Monolayer, bilayer, and heterostructures of green phosphorene for water splitting and photovoltaics. J. Phys. Chem. C 2018, 122, 26032–26038. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, M.; Meng, J.; Li, Q.; Yang, J. Single-and few-layer BiOI as promising photocatalysts for solar water splitting. RSC Adv. 2017, 7, 24446–24452. [Google Scholar] [CrossRef] [Green Version]
- Gan, X.; Lei, D.; Wong, K.-Y. Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Mater. Today Energy 2018, 10, 352–367. [Google Scholar] [CrossRef]
- Shanker, G.S.; Biswas, A.; Ogale, S. 2D materials and their heterostructures for photocatalytic water splitting and conversion of CO2 to value chemicals and fuels. J. Phys. Energy 2021, 3, 022003. [Google Scholar] [CrossRef]
- Singh, A.K.; Mathew, K.; Zhuang, H.L.; Hennig, R.G. Computational screening of 2D materials for photocatalysis. J. Phys. Chem. Lett. 2015, 6, 1087–1098. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Wu, D.; Zhang, X.; Zhao, X.; Zhou, Z. Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts. Small Methods 2018, 2, 1700359. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Ghosh, D.; Pati, S.K. Shining light on new-generation two-dimensional materials from a computational viewpoint. J. Phys. Chem. Lett. 2018, 9, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Chen, J.; Xiao, J. High-Throughput Computational Design of Novel Catalytic Materials. Heterog. Catal. Adv. Des. Charact. Appl. 2021, 2, 497–524. [Google Scholar]
- Jing, Y.; Ma, Y.; Wang, Y.; Li, Y.; Heine, T. Ultrathin layers of PdPX (X=S, Se): Two dimensional semiconductors for photocatalytic water splitting. Chem. Eur. J. 2017, 23, 13612–13616. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Tranca, I.; Yang, J.; Zhou, X.; Li, C. Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga2O3 photocatalyst for overall water splitting. J. Mater. Chem. A 2015, 3, 10309–10319. [Google Scholar] [CrossRef]
- Ma, X.; Wu, X.; Wang, H.; Wang, Y. A Janus MoSSe monolayer: A potential wide solar-spectrum water-splitting photocatalyst with a low carrier recombination rate. J. Mater. Chem. A 2018, 6, 2295–2301. [Google Scholar] [CrossRef]
- Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Insights into current limitations of density functional theory. Science 2008, 321, 792–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinuma, Y.; Grüneis, A.; Kresse, G.; Oba, F. Band alignment of semiconductors from density-functional theory and many-body perturbation theory. Phys. Rev. B 2014, 90, 155405. [Google Scholar] [CrossRef] [Green Version]
- Deák, P.; Kullgren, J.; Aradi, B.; Frauenheim, T.; Kavan, L. Water splitting and the band edge positions of TiO2. Electrochim. Acta 2016, 199, 27–34. [Google Scholar] [CrossRef]
- Esch, T.R.; Bredow, T. Band positions of Rutile surfaces and the possibility of water splitting. Surf. Sci. 2017, 665, 20–27. [Google Scholar] [CrossRef]
- Guo, Z.; Ambrosio, F.; Chen, W.; Gono, P.; Pasquarello, A. Alignment of redox levels at semiconductor–water interfaces. Chem. Mater. 2018, 30, 94–111. [Google Scholar] [CrossRef]
- Hybertsen, M.S.; Louie, S.G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 1986, 34, 5390. [Google Scholar] [CrossRef]
- Rohlfing, M.; Louie, S.G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 2000, 62, 4927. [Google Scholar] [CrossRef]
- Benedict, L.X.; Shirley, E.L.; Bohn, R.B. Optical absorption of insulators and the electron-hole interaction: An ab initio calculation. Phys. Rev. Lett. 1998, 80, 4514. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, S.; Reining, L.; Del Sole, R.; Onida, G. Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 1998, 80, 4510. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Dong, H. A theoretical perspective on charge separation and transfer in metal oxide photocatalysts for water splitting. ChemCatChem 2019, 11, 3688–3715. [Google Scholar] [CrossRef]
- Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Liao, P.; Carter, E.A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 2013, 42, 2401–2422. [Google Scholar] [CrossRef] [PubMed]
- Akimov, A.V.; Neukirch, A.J.; Prezhdo, O.V. Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem. Rev. 2013, 113, 4496–4565. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Feng, Y.P. Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Prog. Surf. Sci. 2016, 91, 183–202. [Google Scholar] [CrossRef]
- Su, T.; Shao, Q.; Qin, Z.; Guo, Z.; Wu, Z. Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 2018, 8, 2253–2276. [Google Scholar] [CrossRef]
- Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Rahmani-Sani, A.; Hosseini-Bandegharaei, A. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 2020, 13, 3498–3520. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.-L.; Sa, B.; Ahuja, R. Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catal. Sci. Technol. 2017, 7, 545–559. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Esparza, A.T.; Takanabe, K. A simplified theoretical guideline for overall water splitting using photocatalyst particles. J. Mater. Chem. A 2016, 4, 2894–2908. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. [Google Scholar] [CrossRef] [PubMed]
- Polman, A.; Atwater, H.A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 2012, 11, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Grajciar, L.; Bludsky, O.; Nachtigall, P. Water adsorption on coordinatively unsaturated sites in CuBTC MOF. J. Phys. Chem. Lett. 2010, 1, 3354–3359. [Google Scholar] [CrossRef]
- Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2019, 120, 919–985. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, T.; Takanabe, K.; Domen, K. Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 2015, 145, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, B. Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: Its thermodynamics and kinetics. Phys. Chem. Chem. Phys. 2014, 16, 1788–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.Q.; Gao, M.; Hong, M.; Ho, G.W. Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 2018, 30, 1802894. [Google Scholar] [CrossRef]
- Chang, X.; Wang, T.; Gong, J. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D. Photocatalysis: From fundamental principles to materials and applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. [Google Scholar] [CrossRef]
- Janczarek, M.; Kowalska, E. Computer Simulations of Photocatalytic Reactors. Catalysts 2021, 11, 198. [Google Scholar] [CrossRef]
- Yang, M.-Q.; Xu, Y.-J. Photocatalytic conversion of CO2 over graphene-based composites: Current status and future perspective. Nanoscale Horiz. 2016, 1, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jonsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Valdés, Á.; Qu, Z.-W.; Kroes, G.-J.; Rossmeisl, J.; Nørskov, J.K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879. [Google Scholar] [CrossRef]
- Valdes, A.; Brillet, J.; Grätzel, M.; Gudmundsdottir, H.; Hansen, H.A.; Jonsson, H.; Klüpfel, P.; Kroes, G.-J.; Le Formal, F.; Man, I.C. Solar hydrogen production with semiconductor metal oxides: New directions in experiment and theory. Phys. Chem. Chem. Phys. 2012, 14, 49–70. [Google Scholar] [CrossRef]
- Rossmeisl, J.; Qu, Z.-W.; Zhu, H.; Kroes, G.-J.; Nørskov, J.K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89. [Google Scholar] [CrossRef]
- Valdes, A.; Kroes, G.-J. First principles study of the photo-oxidation of water on tungsten trioxide (WO3). J. Chem. Phys. 2009, 130, 114701. [Google Scholar] [CrossRef] [PubMed]
- Valdés, Á.; Kroes, G.-J. Cluster study of the photo-oxidation of water on rutile titanium dioxide (TiO2). J. Phys. Chem. C 2010, 114, 1701–1708. [Google Scholar] [CrossRef]
- Tripković, V.; Skúlason, E.; Siahrostami, S.; Nørskov, J.K.; Rossmeisl, J. The oxygen reduction reaction mechanism on Pt(1 1 1) from density functional theory calculations. Electrochim. Acta 2010, 55, 7975–7981. [Google Scholar] [CrossRef]
- Nozik, A. Photoelectrolysis of water using semiconducting TiO2 crystals. Nature 1975, 257, 383–386. [Google Scholar] [CrossRef]
- McCrory, C.C.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef]
- Fu, C.-F.; Sun, J.; Luo, Q.; Li, X.; Hu, W.; Yang, J. Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett. 2018, 18, 6312–6317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wen, X.; Xu, F.; Zhang, Q.; Sun, L. A Density functional theory study of the Cu2ZnSnS4 monolayer as a photo-electrointegrated catalyst for water splitting and hydrogen evolution. J. Phys. Chem. C 2020, 124, 11922–11929. [Google Scholar] [CrossRef]
- Rouzhahong, Y.; Wushuer, M.; Mamat, M.; Wang, Q.; Wang, Q. First principles calculation for photocatalytic Activity of GaAs Monolayer. Sci. Rep. 2020, 10, 9597. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Fan, Y.; Wang, J.; Song, X.; Li, W.; Zhao, M. Metal-free highly efficient photocatalysts for overall water splitting: C3N5 multilayers. Nanoscale 2020, 12, 306–315. [Google Scholar] [CrossRef]
- Zheng, K.; Cui, H.; Luo, H.; Yu, J.; Wang, S.; Tan, C.; Wang, L.; Li, X.; Tao, L.-Q.; Chen, X. Two-dimensional penta-SiAs2: A potential metal-free photocatalyst for overall water splitting. J. Mater. Chem. C 2020, 8, 11980–11987. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, K.; Ma, C.; Chen, Y.; Zhang, H.; Liu, Y.; Ji, Y. Novel two-dimensional β-GeSe and β-SnSe semiconductors: Anisotropic high carrier mobility and excellent photocatalytic water splitting. J. Mater. Chem. A 2020, 8, 19612–19622. [Google Scholar] [CrossRef]
- Kishore, M.A.; Varunaa, R.; Bayani, A.; Larsson, K. Theoretical investigation on BeN2 monolayer for an efficient bifunctional water splitting catalyst. Sci. Rep. 2020, 10, 21411. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.-m.; Ji, Y.; Dong, H.; Rujisamphan, N.; Li, Y. Electronic properties and oxygen reduction reaction catalytic activity of h-ben2 and mgn2 by first-principles calculations. Nanotechnology 2019, 30, 465202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sun, Q. A honeycomb BeN2 sheet with a desirable direct band gap and high carrier mobility. J. Phys. Chem. Lett. 2016, 7, 2664–2670. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Shen, Y.; Gao, X.; Liu, J.; Wu, S.; Ma, Y.; Wang, X.; Gong, D.; Zhou, Z. Strain engineering on the electrical properties and photocatalytic activity in gold sulfide monolayer. Appl. Surf. Sci. 2021, 546, 149066. [Google Scholar] [CrossRef]
- Qiao, M.; Liu, J.; Wang, Y.; Li, Y.; Chen, Z. PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts. J. Am. Chem. Soc. 2018, 140, 12256–12262. [Google Scholar] [CrossRef]
- Ju, L.; Shang, J.; Tang, X.; Kou, L. Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer. J. Am. Chem. Soc. 2019, 142, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Liang, Y.; Jin, H.; Huang, B.; Dai, Y. PdSe2: Flexible two-dimensional transition metal dichalcogenides monolayer for water splitting photocatalyst with extremely low recombination rate. ACS Appl. Energy Mater. 2018, 2, 513–520. [Google Scholar] [CrossRef]
- Fan, Y.; Song, X.; Qi, S.; Ma, X.; Zhao, M. Li-III-VI bilayers for efficient photocatalytic overall water splitting: The role of intrinsic electric field. J. Mater. Chem. A 2019, 7, 26123–26130. [Google Scholar] [CrossRef]
- Ying, Y.; Fan, K.; Zhu, S.; Luo, X.; Huang, H. Theoretical investigation of monolayer RhTeCl semiconductors as photocatalysts for water splitting. J. Phys. Chem. C 2019, 124, 639–646. [Google Scholar] [CrossRef]
- Garg, P.; Rawat, K.S.; Bhattacharyya, G.; Kumar, S.; Pathak, B. Hexagonal cucl monolayer for water splitting: A dft study. ACS Appl. Nano Mater. 2019, 2, 4238–4246. [Google Scholar] [CrossRef]
- Liu, B.; Xu, B.; Li, S.; Du, J.; Liu, Z.; Zhong, W. Heptazine-based porous graphitic carbon nitride: A visible-light driven photocatalyst for water splitting. J. Mater. Chem. A 2019, 7, 20799–20805. [Google Scholar] [CrossRef]
- Jing, Y.; Heine, T. Two-dimensional Pd3P2S8 semiconductors as photocatalysts for the solar-driven oxygen evolution reaction: A theoretical investigation. J. Mater. Chem. A 2018, 6, 23495–23501. [Google Scholar] [CrossRef]
- He, W.; Bian, W.; Yang, Y.; Lu, H.-Y. Monolayer SiP2S6: Metal-free photocatalyst with spontaneous hydrogen and oxygen evolution half reactions. J. Phys. D Appl. Phys. 2019, 53, 015304. [Google Scholar] [CrossRef]
- Srinivasu, K.; Ghosh, S.K. Photocatalytic splitting of water on s-triazine based graphitic carbon nitride: An ab initio investigation. J. Mater. Chem. A 2015, 3, 23011–23016. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Li, L.; Gong, Y.; Niu, L.; Liu, X.; Wang, T.; Sun, C.; Li, C. Adjustable photocatalytic ability of monolayer g-C3N4 utilizing single–metal atom: Density functional theory. Appl. Surf. Sci. 2018, 457, 735–744. [Google Scholar] [CrossRef]
- Jakhar, M.; Kumar, A. Tunable photocatalytic water splitting and solar-to-hydrogen efficiency in β-PdSe2 monolayer. Catal. Sci. Technol. 2021, 11, 6445–6454. [Google Scholar] [CrossRef]
- Tang, M.; Wang, B.; Lou, H.; Li, F.; Bergara, A.; Yang, G. Anisotropic and high-mobility C3S monolayer as a photocatalyst for water splitting. J. Phys. Chem. Lett. 2021, 12, 8320–8327. [Google Scholar] [CrossRef]
- Yu, T.; Wang, C.; Yan, X.; Yang, G.; Schwingenschlögl, U. Anisotropic Janus SiP2 monolayer as a photocatalyst for water splitting. J. Phys. Chem. Lett. 2021, 12, 2464–2470. [Google Scholar] [CrossRef]
- Ju, L.; Bie, M.; Tang, X.; Shang, J.; Kou, L. Janus WSSe monolayer: An excellent photocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 29335–29343. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, M.; Yu, J.; Schwingenschlögl, U. Pd4S3Se3, Pd4S3Te3, and Pd4Se3Te3: Candidate two-dimensional janus materials for photocatalytic water splitting. Chem. Mater. 2021, 33, 4128–4134. [Google Scholar] [CrossRef]
- Ren, K.; Tang, W.; Sun, M.; Cai, Y.; Cheng, Y.; Zhang, G. A direct Z-scheme PtS2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency. Nanoscale 2020, 12, 17281–17289. [Google Scholar] [CrossRef]
- Lu, B.; Zheng, X.; Li, Z. A promising photocatalyst for water-splitting reactions with a stable sandwiched P4O2/black phosphorus heterostructure and high solar-to-hydrogen efficiency. Nanoscale 2020, 12, 6617–6623. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Han, F.; Zhang, J.; Zhang, W. The In2SeS/gC3N4 heterostructure: A new two-dimensional material for photocatalytic water splitting. J. Mater. Chem. C 2020, 8, 6923–6930. [Google Scholar] [CrossRef]
- Lu, B.; Zheng, X.; Li, Z. Two-Dimensional Lateral Heterostructures of Triphosphides: AlP3–GaP3 as a Promising Photocatalyst for Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 53731–53738. [Google Scholar] [CrossRef]
- Huang, S.; Shuai, Z.; Wang, D. Ferroelectricity in 2D metal phosphorus trichalcogenides and van der Waals heterostructures for photocatalytic water splitting. J. Mater. Chem. A 2021, 9, 2734–2741. [Google Scholar] [CrossRef]
- Li, X.-H.; Wang, B.-J.; Wang, G.-D.; Yang, X.-F.; Zhao, R.-Q.; Jia, X.-T.; Ke, S.-H. A two-dimensional arsenene/gC3N4 van der Waals heterostructure: A highly efficient photocatalyst for water splitting. Sustain. Energy Fuels 2021, 5, 2249–2256. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, A.; Zhang, Z.; Jiao, M.; Zhou, Z. Rational design of C2N-based type-II heterojunctions for overall photocatalytic water splitting. Nanoscale Adv. 2019, 1, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Wang, J.; Zhao, M. Spontaneous full photocatalytic water splitting on 2D MoSe2/SnSe2 and WSe2/SnSe2 vdW heterostructures. Nanoscale 2019, 11, 14836–14843. [Google Scholar] [CrossRef]
- Kumar, R.; Das, D.; Singh, A.K. C2N/WS2 van der Waals type-II heterostructure as a promising water splitting photocatalyst. J. Catal. 2018, 359, 143–150. [Google Scholar] [CrossRef]
- Yang, H.; Ma, Y.; Zhang, S.; Jin, H.; Huang, B.; Dai, Y. GeSe@ SnS: Stacked Janus structures for overall water splitting. J. Mater. Chem. A 2019, 7, 12060–12067. [Google Scholar] [CrossRef]
- Mendez, E.E.; Bastard, G.; Chang, L.L.; Esaki, L.; Morkoc, H.; Fischer, R. Effect of an electric field on the luminescence of GaAs quantum wells. Phys. Rev. B 1982, 26, 7101. [Google Scholar] [CrossRef]
- Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0-and d10-related electronic configurations. Energy Environ. Sci. 2009, 2, 364–386. [Google Scholar] [CrossRef]
- Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Jaramillo, T.F.; Deutsch, T.G.; Kleiman-Shwarsctein, A.; Forman, A.J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 2010, 25, 3. [Google Scholar] [CrossRef]
- Zhang, Y.; Antonietti, M. Photocurrent generation by polymeric carbon nitride solids: An initial step towards a novel photovoltaic system. Chem. Asian J. 2010, 5, 1307–1311. [Google Scholar] [CrossRef] [PubMed]
- Tee, S.Y.; Win, K.Y.; Teo, W.S.; Koh, L.D.; Liu, S.; Teng, C.P.; Han, M.Y. Recent progress in energy-driven water splitting. Adv. Sci. 2017, 4, 1600337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uner, D.; Tapan, N.; Özen, I.; Üner, M. Oxygen adsorption on Pt/TiO2 catalysts. Appl. Catal. A Gen. 2003, 251, 225–234. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, J. Recent progress in single-atom catalysts for photocatalytic water splitting. Sol. RRL 2020, 4, 2000283. [Google Scholar] [CrossRef]
- Zhang, W.; Bu, H.; Wang, J.; Zhao, L.; Qu, Y.; Zhao, M. Multi-functional photocatalytic activity of transition-metal tetraaza [14] annulene frameworks. J. Mater. Chem. A 2021, 9, 4221–4229. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, D.; Cao, D.; Zeng, X.C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348. [Google Scholar] [CrossRef]
- Ma, H.; Liu, C.; Liao, J.; Su, Y.; Xue, X.; Xing, W. Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution. J. Mol. Catal. A Chem. 2006, 247, 7–13. [Google Scholar] [CrossRef]
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Lu, S.; Chen, Z.; Li, C.; Li, H.; Zhao, Y.; Gong, Y.; Niu, L.; Liu, X.; Wang, T.; Sun, C. Adjustable electronic performances and redox ability of a gC3N4 monolayer by adsorbing nonmetal solute ions: A first principles study. J. Mater. Chem. A 2016, 4, 14827–14838. [Google Scholar] [CrossRef]
- Gao, G.; Jiao, Y.; Waclawik, E.R.; Du, A. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cui, P.; Zhong, W.; Li, J.; Wang, X.; Wang, Z.; Jiang, J. Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction. Chem. Commun. 2016, 52, 13233–13236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Lan, Z.-A.; Lin, L.; Lin, S.; Wang, X. Overall water splitting by Pt/gC3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. 2016, 128, 10958–10963. [Google Scholar] [CrossRef]
- Liu, J. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59. [Google Scholar] [CrossRef]
- Li, L.; Chang, X.; Lin, X.; Zhao, Z.-J.; Gong, J. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178. [Google Scholar] [CrossRef] [PubMed]
- Zafar, Z.; Yi, S.; Li, J.; Li, C.; Zhu, Y.; Zada, A.; Yao, W.; Liu, Z.; Yue, X. Recent development in defects engineered photocatalysts: An overview of the experimental and theoretical strategies. Energy Environ. Mater. 2022, 5, 68–114. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336. [Google Scholar] [CrossRef]
- Liu, J.; Wei, Z.; Shangguan, W. Defects engineering in photocatalytic water splitting materials. ChemCatChem 2019, 11, 6177–6189. [Google Scholar] [CrossRef] [Green Version]
- Strmcnik, D.; Lopes, P.P.; Genorio, B.; Stamenkovic, V.R.; Markovic, N.M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 2016, 29, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zeng, J.; Li, Q.; Xia, L.; Luo, X.; Ma, Z.; Peng, B.; Xiong, S.; Li, Z.; Wang, L.-L. Defect-engineered 2D/2D hBN/g-C3N4 Z-scheme heterojunctions with full visible-light absorption: Efficient metal-free photocatalysts for hydrogen evolution. Appl. Surf. Sci. 2021, 547, 149207. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnan, V. Vacancy engineering in semiconductor photocatalysts: Implications in hydrogen evolution and nitrogen fixation applications. Adv. Funct. Mater. 2021, 31, 2009807. [Google Scholar] [CrossRef]
- Wang, G.; Pandey, R.; Karna, S.P. Effects of extrinsic point defects in phosphorene: B, C, N, O, and F adatoms. Appl. Phys. Lett. 2015, 106, 173104. [Google Scholar] [CrossRef] [Green Version]
- Yong, X.; Zhang, J.; Ma, X. Effects of intrinsic defects on the photocatalytic water-splitting activities of PtSe2. Int. J. Hydrogen Energy 2020, 45, 8549–8557. [Google Scholar] [CrossRef]
- Zheng, H.; Choi, Y.; Baniasadi, F.; Hu, D.; Jiao, L.; Park, K.; Tao, C. Visualization of point defects in ultrathin layered 1T-PtSe2. 2D Mater. 2019, 6, 041005. [Google Scholar] [CrossRef]
- Ma, L.-J.; Shen, H. Activating PtSe2 monolayer for hydrogen evolution reaction by defect engineering and Pd doping. Appl. Surf. Sci. 2021, 545, 149013. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, X.; Wang, J.; Song, X.; Wang, A.; Liu, H.; Zhao, M. Highly-efficient overall water splitting in 2D Janus group-III chalcogenide multilayers: The roles of intrinsic electric filed and vacancy defects. Sci. Bull. 2020, 65, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Er, D.; Ye, H.; Frey, N.C.; Kumar, H.; Lou, J.; Shenoy, V.B. Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Lett. 2018, 18, 3943–3949. [Google Scholar] [CrossRef]
- Li, H.; Tsai, C.; Koh, A.L.; Cai, L.; Contryman, A.W.; Fragapane, A.H.; Zhao, J.; Han, H.S.; Manoharan, H.C.; Abild-Pedersen, F. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Xia, B.; Wang, Y.; Xiao, W.; Xi, P.; Xue, D.; Ding, J. Dual-native vacancy activated basal plane and conductivity of MoSe2 with high-efficiency hydrogen evolution reaction. Small 2018, 14, 1704150. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Zhou, D.; Li, F.; Cao, D.; Chen, X. Defect engineering in MoSe2 for the hydrogen evolution reaction: From point defects to edges. ACS Appl. Mater. Interfaces 2017, 9, 42688–42698. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Si, M.; Kumar, A.; Pandey, R. Strain engineering of Dirac cones in graphyne. Appl. Phys. Lett. 2014, 104, 213107. [Google Scholar]
- Zhong, X.; Yap, Y.K.; Pandey, R.; Karna, S.P. First-principles study of strain-induced modulation of energy gaps of graphene/BN and BN bilayers. Phys. Rev. B 2011, 83, 193403. [Google Scholar] [CrossRef] [Green Version]
- Mohan, B.; Kumar, A.; Ahluwalia, P. Electronic and optical properties of silicene under uni-axial and bi-axial mechanical strains: A first principle study. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 61, 40–47. [Google Scholar] [CrossRef]
- Kumar, A.; Ahluwalia, P. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te). Phys. B Condens. Matter 2013, 419, 66–75. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Wei, Q.; Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 2014, 104, 251915. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, A.; Ahluwalia, P.; Pandey, R. Strain and electric field induced electronic properties of two-dimensional hybrid bilayers of transition-metal dichalcogenides. J. Appl. Phys. 2014, 116, 063711. [Google Scholar] [CrossRef]
- Wang, H.; Xu, S.; Tsai, C.; Li, Y.; Liu, C.; Zhao, J.; Liu, Y.; Yuan, H.; Abild-Pedersen, F.; Prinz, F.B. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036. [Google Scholar] [PubMed]
- You, B.; Tang, M.T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Shi, L.; Ouyang, Y.; Wang, J. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem. Mater. 2016, 28, 9026–9032. [Google Scholar] [CrossRef]
- Bo, T.; Liu, Y.; Yuan, J.; Wu, P.; Zhou, W. Improved photocatalytic HER activity of α-Sb monolayer with doping and strain engineering. Appl. Surf. Sci. 2020, 507, 145194. [Google Scholar]
- Wang, J.; Huang, Y.; Ma, F.; Zhang, J.; Wei, X.; Liu, J. Strain engineering the electronic and photocatalytic properties of WS2/blue phosphene van der Waals heterostructures. Catal. Sci. Technol. 2021, 11, 179–190. [Google Scholar]
- Wang, Z.; Zhou, G. Lattice-strain control of flexible janus indium chalcogenide monolayers for photocatalytic water splitting. J. Phys. Chem. C 2019, 124, 167–174. [Google Scholar] [CrossRef]
- Wang, G.; Li, Z.; Wu, W.; Guo, H.; Chen, C.; Yuan, H.; Yang, S.A. A two-dimensional h-BN/C2N heterostructure as a promising metal-free photocatalyst for overall water-splitting. Phys. Chem. Chem. Phys. 2020, 22, 24446–24454. [Google Scholar]
- Wang, G.; Zhang, L.; Li, Y.; Zhao, W.; Kuang, A.; Li, Y.; Xia, L.; Li, Y.; Xiao, S. Biaxial strain tunable photocatalytic properties of 2D ZnO/GeC heterostructure. J. Phys. D Appl. Phys. 2019, 53, 015104. [Google Scholar] [CrossRef]
- Wang, B.; Kuang, A.; Luo, X.; Wang, G.; Yuan, H.; Chen, H. Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting. Appl. Surf. Sci. 2018, 439, 374–379. [Google Scholar] [CrossRef]
- Shu, H.; Guo, J.; Niu, X. Electronic, photocatalytic, and optical properties of two-dimensional boron pnictides. J. Mater. Sci. 2019, 54, 2278–2288. [Google Scholar] [CrossRef]
- Shehzad, N.; Shahid, I.; Yao, S.; Ahmad, S.; Ali, A.; Zhang, L.; Zhou, Z. A first-principles study of electronic structure and photocatalytic performance of two-dimensional van der Waals MTe2–As (M = Mo, W) heterostructures. Int. J. Hydrogen Energy 2020, 45, 27089–27097. [Google Scholar] [CrossRef]
- Luo, X.; Wang, G.; Huang, Y.; Wang, B.; Yuan, H.; Chen, H. A two-dimensional layered CdS/C2N heterostructure for visible-light-driven photocatalysis. Phys. Chem. Chem. Phys. 2017, 19, 28216–28224. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Liang, C.; Zeng, X.C. Two-dimensional MgX2Se4 (X = Al, Ga) monolayers with tunable electronic properties for optoelectronic and photocatalytic applications. Nanoscale 2019, 11, 19806–19813. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lv, B.; Ding, Z.; Luo, Z. External uniaxial compressive strain induced built-in electric field in bilayer two-dimensional As2S3 for photocatalytic water splitting: A first-principles study. Appl. Surf. Sci. 2021, 535, 147701. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Zhang, L.; Chang, J.; Li, Y.; Xia, L.; Xiao, S.; Dang, S.; Li, C. Two dimensional ZnO/AlN composites used for photocatalytic water-splitting: A hybrid density functional study. RSC Adv. 2019, 9, 36234–36239. [Google Scholar] [CrossRef]
- Hu, F.; Tao, L.; Ye, H.; Li, X.; Chen, X. ZnO/WSe2 vdW heterostructure for photocatalytic water splitting. J. Mater. Chem. C 2019, 7, 7104–7113. [Google Scholar] [CrossRef]
- Zhou, Y.; López, N. The role of Fe species on NiOOH in oxygen evolution reactions. ACS Catal. 2020, 10, 6254–6261. [Google Scholar] [CrossRef]
- Kilic, M.E.; Lee, K.-R. Auxetic, flexible, and strain-tunable two-dimensional th-AlN for photocatalytic visible light water splitting with anisotropic high carrier mobility. J. Mater. Chem. C 2021, 9, 4971–4977. [Google Scholar] [CrossRef]
- Peng, Q.; Xiong, R.; Sa, B.; Zhou, J.; Wen, C.; Wu, B.; Anpo, M.; Sun, Z. Computational mining of photocatalysts for water splitting hydrogen production: Two-dimensional InSe-family monolayers. Catal. Sci. Technol. 2017, 7, 2744–2752. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, F.; Yuan, B.; Xiao, S.; Kuang, A.; Zhong, M.; Dang, S.; Long, X.; Zhang, W. Strain-tunable visible-light-responsive photocatalytic properties of two-dimensional CdS/g-C3N4: A hybrid density functional study. Nanomaterials 2019, 9, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Yang, X.; Singh, D.; Panda, P.K.; Luo, W.; Li, Y.; Ahuja, R. Strain-Engineered Metal-Free h-B2O Monolayer as a Mechanocatalyst for Photocatalysis and Improved Hydrogen Evolution Reaction. J. Phys. Chem. C 2020, 124, 7884–7892. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, Z.; Gong, T.; Pan, R.; Wang, H.; Guo, Z.; Zhang, H.; Fu, X. Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications. J. Mater. Chem. A 2020, 8, 8813–8830. [Google Scholar] [CrossRef]
- Ju, L.; Bie, M.; Shang, J.; Tang, X.; Kou, L. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J. Phys. Mater. 2020, 3, 022004. [Google Scholar] [CrossRef]
- Chaurasiya, R.; Dixit, A.; Pandey, R. Strain-mediated stability and electronic properties of WS2, Janus WSSe and WSe2 monolayers. Superlattices Microstruct. 2018, 122, 268–279. [Google Scholar] [CrossRef]
- Huang, A.; Shi, W.; Wang, Z. Optical properties and photocatalytic applications of two-dimensional Janus group-III monochalcogenides. J. Phys. Chem. C 2019, 123, 11388–11396. [Google Scholar] [CrossRef]
- Li, R.; Cheng, Y.; Huang, W. Recent progress of Janus 2D transition metal chalcogenides: From theory to experiments. Small 2018, 14, 1802091. [Google Scholar] [CrossRef]
- Xia, C.; Xiong, W.; Du, J.; Wang, T.; Peng, Y.; Li, J. Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B 2018, 98, 165424. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, J.; Yang, Z.; Liu, J.; Ouyang, F. Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe. Phys. Rev. B 2019, 99, 075160. [Google Scholar] [CrossRef]
- Chen, W.; Qu, Y.; Yao, L.; Hou, X.; Shi, X.; Pan, H. Electronic, magnetic, catalytic, and electrochemical properties of two-dimensional Janus transition metal chalcogenides. J. Mater. Chem. A 2018, 6, 8021–8029. [Google Scholar] [CrossRef]
- Jamdagni, P.; Pandey, R.; Tankeshwar, K. First principles study of Janus WSeTe monolayer and its application in photocatalytic water splitting. Nanotechnology 2021, 33, 025703. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hou, X.; Shi, X.; Pan, H. Two-dimensional Janus transition metal oxides and chalcogenides: Multifunctional properties for photocatalysts, electronics, and energy conversion. ACS Appl. Mater. Interfaces 2018, 10, 35289–35295. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wei, D. Janus group-III chalcogenide monolayers and derivative type-II heterojunctions as water-splitting photocatalysts with strong visible-light absorbance. J. Phys. Chem. C 2018, 122, 27795–27802. [Google Scholar] [CrossRef]
- You, L.; Wang, Y.; Zhou, K. 2D pentagonal pd-based janus transition metal dichalcogenides for photocatalytic water splitting. Phys. Status Solidi (RRL) Rapid Res. Lett. 2022, 16, 2100344. [Google Scholar] [CrossRef]
- Moniz, S.J.; Shevlin, S.A.; Martin, D.J.; Guo, Z.-X.; Tang, J. Visible-light driven heterojunction photocatalysts for water splitting–a critical review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review. Nanoscale 2013, 5, 8326–8339. [Google Scholar] [CrossRef]
- Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013, 3, 1486–1503. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef]
- Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Z-Scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges. Adv. Sci. 2016, 3, 1500389. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-H.; Wang, B.-J.; Cai, X.-L.; Zhang, L.-W.; Wang, G.-D.; Ke, S.-H. Tunable electronic properties of arsenene/GaS van der Waals heterostructures. RSC Adv. 2017, 7, 28393–28398. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.-J.; Li, X.-H.; Zhao, R.; Cai, X.-L.; Yu, W.-Y.; Li, W.-B.; Liu, Z.-S.; Zhang, L.-W.; Ke, S.-H. Electronic structures and enhanced photocatalytic properties of blue phosphorene/BSe van der Waals heterostructures. J. Mater. Chem. A 2018, 6, 8923–8929. [Google Scholar] [CrossRef]
- Nigam, S.; Majumder, C.; Pandey, R. Impact of van der Waal’s interaction in the hybrid bilayer of silicene/SiC. RSC Adv. 2016, 6, 21948–21953. [Google Scholar] [CrossRef]
- Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661. [Google Scholar] [CrossRef]
- Fu, C.-F.; Li, X.; Yang, J. A rationally designed two-dimensional MoSe2/Ti2CO2 heterojunction for photocatalytic overall water splitting: Simultaneously suppressing electron–hole recombination and photocorrosion. Chem. Sci. 2021, 12, 2863–2869. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Wang, P.; Kuang, A.; Zhou, T.; Yuan, H.; Chen, H. Bilayer MoTe2/XS2 (X = Hf, Sn, Zr) heterostructures with efficient carrier separation and light absorption for photocatalytic water splitting into hydrogen. Appl. Surf. Sci. 2021, 544, 148842. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, F.; Qiu, J.; Chen, X.; Zheng, K.; Guo, H.; Yu, J.; Bao, J. A novel Hf2CO2/WS2 van der Waals heterostructure as a potential candidate for overall water splitting photocatalyst. Mater. Sci. Semicond. Process. 2021, 133, 105947. [Google Scholar] [CrossRef]
- Ren, K.; Yu, J.; Tang, W. Two-dimensional ZnO/BSe van der waals heterostructure used as a promising photocatalyst for water splitting: A DFT study. J. Alloys Compd. 2020, 812, 152049. [Google Scholar] [CrossRef]
- Ashwin Kishore, M.; Larsson, K.; Ravindran, P. Two-dimensional cdx/c2n (X = S, Se) heterostructures as potential photocatalysts for water splitting: A dft study. ACS Omega 2020, 5, 23762–23768. [Google Scholar] [CrossRef]
- Wang, B.; Yuan, H.; Chang, J.; Chen, X.; Chen, H. Two dimensional InSe/C2N van der Waals heterojunction as enhanced visible-light-responsible photocatalyst for water splitting. Appl. Surf. Sci. 2019, 485, 375–380. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, J.-R.; Chen, L.; Guo, J.; Shen, S.; Au, C.-T.; Yin, S.-F.; Cai, M.-Q. Density functional theory calculation on two-dimensional MoS2/BiOX (X = Cl, Br, I) van der Waals heterostructures for photocatalytic action. Appl. Surf. Sci. 2019, 492, 157–165. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, B.; Liu, Y.; Liu, L.; Xia, T.; Zhang, X.; Ye, C.; Yu, Y.; Wang, B. Two-dimensional as/bluep van der waals hetero-structure as a promising photocatalyst for water splitting: A DFT study. Coatings 2020, 10, 1160. [Google Scholar] [CrossRef]
- Wang, B.; Wang, G.; Yuan, H.; Kuang, A.; Chang, J.; Huang, Y.; Chen, H. Strain-tunable electronic and optical properties in two dimensional GaSe/g-C3N4 van der Waals heterojunction as photocatalyst for water splitting. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 118, 113896. [Google Scholar] [CrossRef]
- Xu, X.; Ge, X.; Liu, X.; Li, L.; Fu, K.; Dong, Y.; Meng, F.; Si, R.; Zhang, M. Two-dimensional M2CO2/MoS2 (M = Ti, Zr and Hf) van der Waals heterostructures for overall water splitting: A density functional theory study. Ceram. Int. 2020, 46, 13377–13384. [Google Scholar] [CrossRef]
- Li, J.; Huang, Z.; Ke, W.; Yu, J.; Ren, K.; Dong, Z. High solar-to-hydrogen efficiency in Arsenene/GaX (X = S, Se) van der Waals heterostructure for photocatalytic water splitting. J. Alloys Compd. 2021, 866, 158774. [Google Scholar] [CrossRef]
- Zeng, J.; Xu, L.; Luo, X.; Peng, B.; Ma, Z.; Wang, L.-L.; Yang, Y.; Shuai, C. A novel design of SiH/CeO2 (111) van der Waals type-II heterojunction for water splitting. Phys. Chem. Chem. Phys. 2021, 23, 2812–2818. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.; Zhang, W.; Li, T. Type-II InSe/g-C3N4 heterostructure as a high-efficiency oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Phys. Chem. Lett. 2019, 10, 3122–3128. [Google Scholar] [CrossRef]
- Arra, S.; Babar, R.; Kabir, M. van der Waals heterostructure for photocatalysis: Graphitic carbon nitride and Janus transition-metal dichalcogenides. Phys. Rev. Mater. 2019, 3, 095402. [Google Scholar] [CrossRef] [Green Version]
- Idrees, M.; Din, H.; Rehman, S.U.; Shafiq, M.; Saeed, Y.; Bui, H.; Nguyen, C.V.; Amin, B. Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Phys. Chem. Chem. Phys. 2020, 22, 10351–10359. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Bai, K.; Ding, Y.; Wang, X.; Li, E.; Zheng, J. Janus XSSe/SiC (X = Mo, W) van der Waals heterostructures as promising water-splitting photocatalysts. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 123, 114207. [Google Scholar] [CrossRef]
- Din, H.; Idrees, M.; Albar, A.; Shafiq, M.; Ahmad, I.; Nguyen, C.V.; Amin, B. Rashba spin splitting and photocatalytic properties of GeC−M SSe (M = Mo, W) van der Waals heterostructures. Phys. Rev. B 2019, 100, 165425. [Google Scholar] [CrossRef]
- Peng, Q.; Guo, Z.; Sa, B.; Zhou, J.; Sun, Z. New gallium chalcogenides/arsenene van der Waals heterostructures promising for photocatalytic water splitting. Int. J. Hydrogen Energy 2018, 43, 15995–16004. [Google Scholar] [CrossRef]
- Ren, K.; Wang, S.; Luo, Y.; Chou, J.-P.; Yu, J.; Tang, W.; Sun, M. High-efficiency photocatalyst for water splitting: A Janus MoSSe/XN (X = Ga, Al) van der Waals heterostructure. J. Phys. D Appl. Phys. 2020, 53, 185504. [Google Scholar] [CrossRef]
- Idrees, M.; Din, H.; Ali, R.; Rehman, G.; Hussain, T.; Nguyen, C.; Ahmad, I.; Amin, B. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Phys. Chem. Chem. Phys. 2019, 21, 18612–18621. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 1979, 10, 59–75. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 2015, 25, 998–1013. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, Y.; Li, P.; Ma, M.; Maheskumar, V.; Jiang, Z.; Zhang, R. An efficient Z-scheme (Cr, B) codoped g-C3N4/BiVO4 photocatalyst for water splitting: A hybrid DFT study. Int. J. Hydrogen Energy 2021, 46, 247–261. [Google Scholar] [CrossRef]
- Cao, M.; Ni, L.; Wang, Z.; Liu, J.; Tian, Y.; Zhang, Y.; Wei, X.; Guo, T.; Fan, J.; Duan, L. DFT investigation on direct Z-scheme photocatalyst for overall water splitting: MoTe2/BAs van der Waals heterostructure. Appl. Surf. Sci. 2021, 551, 149364. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, P.; Zhang, X.; Shen, T.; Liu, J.; Ren, J.-C.; Wang, H.; Li, S.; Liu, W. Enhanced solar-to-hydrogen efficiency for photocatalytic water splitting based on a polarized heterostructure: The role of intrinsic dipoles in heterostructures. J. Mater. Chem. A 2021, 9, 14515–14523. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Q.; Ma, M.; Li, P.; Maheskumar, V.; Jiang, Z.; Zhang, R. Enhanced optical absorption and photocatalytic water splitting of g-C3N4/TiO2 heterostructure through C&B codoping: A hybrid DFT study. Int. J. Hydrogen Energy 2021, 46, 9417–9432. [Google Scholar]
- Fan, Y.; Qi, S.; Li, W.; Zhao, M. Direct Z-scheme photocatalytic CO2 conversion to solar fuels in a two-dimensional C2N/aza-CMP heterostructure. Appl. Surf. Sci. 2021, 541, 148630. [Google Scholar] [CrossRef]
- Fu, C.F.; Zhang, R.; Luo, Q.; Li, X.; Yang, J. Construction of direct Z-Scheme photocatalysts for overall water splitting using two-dimensional van der waals heterojunctions of metal dichalcogenides. J. Comput. Chem. 2019, 40, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wang, X.; Yuan, H.; Zhou, T.; Chang, J.; Chen, H. Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction. Int. J. Hydrogen Energy 2020, 45, 2785–2793. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, L.; Zheng, Q.; Gao, P.; Zhao, J.; Yang, J. Direct Z-scheme water splitting photocatalyst based on two-dimensional Van Der Waals heterostructures. J. Phys. Chem. Lett. 2018, 9, 5419–5424. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Bai, X.; Zhou, Z.; Wang, J. Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catal. 2020, 10, 1976–1983. [Google Scholar] [CrossRef]
- Lang, J.; Hu, Y.H. Phosphorus-based metal-free Z-scheme 2D van der Waals heterostructures for visible-light photocatalytic water splitting: A first-principles study. Phys. Chem. Chem. Phys. 2020, 22, 9250–9256. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Shan, P.; Chen, Y.; Zhao, X.; Tian, W.; Zhang, Y.; Feng, R.; Yuan, H.; Cui, H. Hydrogen evolution from MoSe2/WO3(001) heterojunction by photocatalytic water splitting: A density functional theory study. Appl. Surf. Sci. 2021, 564, 150117. [Google Scholar] [CrossRef]
- Di, T.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J. Catal. 2017, 352, 532–541. [Google Scholar] [CrossRef]
- Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939. [Google Scholar] [CrossRef]
- Zhou, Z.; Niu, X.; Zhang, Y.; Wang, J. Janus MoSSe/WSeTe heterostructures: A direct Z-scheme photocatalyst for hydrogen evolution. J. Mater. Chem. A 2019, 7, 21835–21842. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Long, R.; Prezhdo, O.V. Charge separation and recombination in two-dimensional MoS2/WS2: Time-domain ab initio modeling. Chem. Mater. 2017, 29, 2466–2473. [Google Scholar] [CrossRef]
- Kang, J.; Wang, L.-W. Robust band gap of TiS3 nanofilms. Phys. Chem. Chem. Phys. 2016, 18, 14805–14809. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, B.; Liu, J.-M.; Yin, J.; Miao, F.; Duan, C.-G.; Wan, X. Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2. Phys. Chem. Chem. Phys. 2016, 18, 14222–14227. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Kumar, A.; Chakrabarti, A.; Pandey, R. Stacking-dependent electronic properties of aluminene based multilayer van der Waals heterostructures. Comput. Mater. Sci. 2020, 185, 109952. [Google Scholar] [CrossRef]
- Kumar, A.; Sachdeva, G.; Pandey, R.; Karna, S.P. Optical absorbance in multilayer two-dimensional materials: Graphene and antimonene. Appl. Phys. Lett. 2020, 116, 263102. [Google Scholar] [CrossRef]
- Sachdeva, G.; Kaur, S.; Pandey, R.; Karna, S.P. First-principles study of linear and nonlinear optical properties of multi-layered borophene. Computation 2021, 9, 101. [Google Scholar] [CrossRef]
- Zhang, L.; Zunger, A. Evolution of electronic structure as a function of layer thickness in group-VIB transition metal dichalcogenides: Emergence of localization prototypes. Nano Lett. 2015, 15, 949–957. [Google Scholar] [CrossRef]
- Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Jamdagni, P.; Kumar, A.; Ahluwalia, P. Electronic, dielectric and mechanical properties of MoS2/SiC hybrid bilayer: A first principle study. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 71, 49–55. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, G.; Kumar, A.; Pandey, R. Stability and electronic properties of hybrid SnO bilayers: SnO/graphene and SnO/BN. Nanotechnology 2017, 28, 475708. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Zheng, X.; Li, Z. Few-layer P4O2: A promising photocatalyst for water splitting. ACS Appl. Mater. Interfaces 2019, 11, 10163–10170. [Google Scholar] [CrossRef] [PubMed]
- Cupo, A.; Meunier, V. Quantum confinement in black phosphorus-based nanostructures. J. Phys. Condens. Matter 2017, 29, 283001. [Google Scholar] [CrossRef]
- Xu, L.-C.; Song, X.-J.; Yang, Z.; Cao, L.; Liu, R.-P.; Li, X.-Y. Phosphorene nanoribbons: Passivation effect on bandgap and effective mass. Appl. Surf. Sci. 2015, 324, 640–644. [Google Scholar] [CrossRef]
- Kapoor, P.; Kumar, A.; Ahluwalia, P. Size-dependent electronic, mechanical and optical properties of noble metal nanoribbons. Mater. Sci. Eng. B 2020, 262, 114786. [Google Scholar] [CrossRef]
- Swaroop, R.; Ahluwalia, P.; Tankeshwar, K.; Kumar, A. Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics. RSC Adv. 2017, 7, 2992–3002. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.; Hao, B.; Waters, K.; Lee, C.H.; Idrobo, J.-C.; Zhang, D.; Pandey, R.; Yap, Y.K. Two-dimensional gold quantum dots with tunable bandgaps. ACS Nano 2019, 13, 4347–4353. [Google Scholar] [CrossRef] [PubMed]
- Loh, G.; Pandey, R.; Yap, Y.K.; Karna, S.P. MoS2 quantum dot: Effects of passivation, additional layer, and h-BN substrate on its stability and electronic properties. J. Phys. Chem. C 2015, 119, 1565–1574. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sonvane, Y.; Wang, G.; Pandey, R. Size and edge roughness effects on thermal conductivity of pristine antimonene allotropes. Chem. Phys. Lett. 2015, 641, 169–172. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Kedia, D.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.-H. Carbon nanotubes: A potential material for energy conversion and storage. Prog. Energy Combust. Sci. 2018, 64, 219–253. [Google Scholar] [CrossRef]
- Kar, M.; Sarkar, R.; Pal, S.; Sarkar, P. Edge-modified phosphorene antidot nanoflakes and their van der Waals heterojunctions for solar cell applications. J. Phys. Chem. C 2019, 123, 20748–20756. [Google Scholar] [CrossRef]
- Maibam, A.; Chakraborty, D.; Joshi, K.; Krishnamurty, S. Exploring edge functionalised blue phosphorene nanoribbons as novel photocatalysts for water splitting. N. J. Chem. 2021, 45, 3570–3580. [Google Scholar] [CrossRef]
- Cai, Y.; Gao, J.; Chen, S.; Ke, Q.; Zhang, G.; Zhang, Y.-W. Design of phosphorene for hydrogen evolution performance comparable to platinum. Chem. Mater. 2019, 31, 8948–8956. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Lin, L.; Yang, C.; Dai, J.; Yang, J. Edge-modified phosphorene nanoflake heterojunctions as highly efficient solar cells. Nano Lett. 2016, 16, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Lin, L.; Zhang, R.; Yang, C.; Yang, J. Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons. J. Am. Chem. Soc. 2017, 139, 15429–15436. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Kumar, A.; Srivastava, S.; Pandey, R.; Tankeshwar, K. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons. Nanotechnology 2018, 29, 155701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Wang, L.-W. Nanoscale charge localization induced by random orientations of organic molecules in hybrid perovskite CH3NH3PbI3. Nano Lett. 2015, 15, 248–253. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Huang, Y.; Feng, S.; Wang, X.; Jiang, X.; Li, X.; Zhao, J.; Luo, Y.; Zhang, G. Physically close yet chemically separate reduction and oxidation sites in double-walled nanotubes for photocatalytic hydrogen generation. J. Phys. Chem. Lett. 2019, 10, 3739–3743. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wan, Q.; Wang, Z.; Lin, S. The band structure engineering of fluorine-passivated graphdiyne nanoribbons via doping with BN pairs for overall photocatalytic water splitting. Phys. Chem. Chem. Phys. 2020, 22, 26995–27001. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wan, Q.; Anpo, M.; Lin, S. Bandgap opening of graphdiyne monolayer via B, N-codoping for photocatalytic overall water splitting: Design strategy from DFT studies. J. Phys. Chem. C 2020, 124, 6624–6633. [Google Scholar] [CrossRef]
- Wan, Q.; Wei, F.; Ma, Z.; Anpo, M.; Lin, S. Novel porous boron nitride nanosheet with carbon doping: Potential metal-free photocatalyst for visible-light-driven overall water splitting. Adv. Theory Simul. 2019, 2, 1800174. [Google Scholar] [CrossRef]
- Rawat, A.; Ahammed, R.; Dimple; Jena, N.; Mohanta, M.K.; De Sarkar, A. Solar energy harvesting in type II van der Waals heterostructures of semiconducting group III monochalcogenide monolayers. J. Phys. Chem. C 2019, 123, 12666–12675. [Google Scholar] [CrossRef]
- Jena, N.; Rawat, A.; De Sarkar, A. Strain and pH facilitated artificial photosynthesis in monolayer MoS2 nanosheets. J. Mater. Chem. A 2017, 5, 22265–22276. [Google Scholar]
- Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645. [Google Scholar] [CrossRef]
- Gao, G.; Bottle, S.; Du, A. Understanding the activity and selectivity of single atom catalysts for hydrogen and oxygen evolution via ab initial study. Catal. Sci. Technol. 2018, 8, 996–1001. [Google Scholar] [CrossRef]
- Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129. [Google Scholar] [CrossRef]
- Bagger, A.; Castelli, I.E.; Hansen, M.H.; Rossmeisl, J. Fundamental atomic insight in electrocatalysis. In Handbook of Materials Modeling: Applications: Current and Emerging Materials; Andreoni, W., Yip, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–31. [Google Scholar]
- Liang, Q.; Brocks, G.; Bieberle-Hütter, A. Oxygen evolution reaction (OER) mechanism under alkaline and acidic conditions. J. Phys. Energy 2021, 3, 026001. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, N.; Wang, Z.; Zhao, J. Nitrogen-doped graphene on transition metal substrates as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions. ACS Appl. Mater. Interfaces 2017, 9, 22578–22587. [Google Scholar] [CrossRef]
- Fei, H.; Dong, J.; Feng, Y.; Allen, C.S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72. [Google Scholar] [CrossRef]
- Zhuang, L.; Jia, Y.; He, T.; Du, A.; Yan, X.; Ge, L.; Zhu, Z.; Yao, X. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509–3518. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Z.; Li, Y. Investigation of the mechanism of overall water splitting in UV-visible and infrared regions with SnC/arsenene vdW heterostructures in different configurations. Phys. Chem. Chem. Phys. 2020, 22, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Wirth, J.; Neumann, R.; Antonietti, M.; Saalfrank, P. Adsorption and photocatalytic splitting of water on graphitic carbon nitride: A combined first principles and semiempirical study. Phys. Chem. Chem. Phys. 2014, 16, 15917–15926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakhar, M.; Kumar, A.; Ahluwalia, P.K.; Tankeshwar, K.; Pandey, R. Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. Materials 2022, 15, 2221. https://doi.org/10.3390/ma15062221
Jakhar M, Kumar A, Ahluwalia PK, Tankeshwar K, Pandey R. Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. Materials. 2022; 15(6):2221. https://doi.org/10.3390/ma15062221
Chicago/Turabian StyleJakhar, Mukesh, Ashok Kumar, Pradeep K. Ahluwalia, Kumar Tankeshwar, and Ravindra Pandey. 2022. "Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective" Materials 15, no. 6: 2221. https://doi.org/10.3390/ma15062221
APA StyleJakhar, M., Kumar, A., Ahluwalia, P. K., Tankeshwar, K., & Pandey, R. (2022). Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. Materials, 15(6), 2221. https://doi.org/10.3390/ma15062221