Computational and Experimental Study of Nonlinear Optical Susceptibilities of Composite Materials Based on PVK Polymer Matrix and Benzonitrile Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Simulations
2.2. Simulation Methodology of Thin Films
2.3. Samples Preparation
2.4. Experimental Sets
2.5. Molecular Orientation
3. Results and Discussion
3.1. Structure of Composite Systems
3.2. Reorientation of Chromophores
3.3. Electric and Optical Properties of Chromophores
3.4. UV–Vis Absorption Spectra
3.5. NLO Susceptibility
3.6. Second and Third Harmonic Generation
3.7. Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalton, L.; Harper, A.; Ren, A.; Wang, F.; Todorova, G.; Chen, J.; Zhang, C.; Lee, M. Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics. Ind. Eng. Chem. Res. 1999, 38, 8–33. [Google Scholar] [CrossRef]
- Alyar, H. A Review on nonlinear optical properties of donor-acceptor derivatives of naphthalene and azanaphthalene. Rev. Adv. Mater. Sci. 2013, 34, 79–87. [Google Scholar]
- Yan, L.; Chen, X.; He, Q.; Wang, Y.; Wang, X.; Guo, Q.; Bai, F.; Xia, A. Localized Emitting State and Energy Transfer Properties of Quadrupolar Chromophores and (Multi)Branched Derivatives. J. Phys. Chem. A 2012, 116, 8693–8705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbiest, T.; Houbrechts, S.; Kauranen, M.; Clays, K.; Persoons, A. Second-order nonlinear optical materials: Recent advances in chromophore design. J. Mater. Chem. 1997, 7, 2175–2189. [Google Scholar] [CrossRef]
- Dalton, L.R.; Sulivan, P.A.; Bale, D.H. Electric field poled organic electro-optic materials: State of the art and future prospects. Chem. Rev. 2010, 110, 25–55. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.H.; Dalton, L.R. Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials. J. Phys. Chem. A 2000, 104, 20, 4785–4795. [Google Scholar] [CrossRef]
- Tu, Y.; Zhang, Q.; Agren, H. Electric Field Poled Polymeric Nonlinear Optical Systems: Molecular Dynamics Simulations of Poly(methyl methacrylate) Doped with Disperse Red Chromophores. J. Phys. Chem. B 2007, 111, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Rommel, H.L.; Robinson, B.H. Orientation of Electro-optic Chromophores under Poling Conditions: A Spheroidal Model. J. Phys. Chem. C 2007, 111, 18765–18777. [Google Scholar] [CrossRef]
- Kim, W.-K.; Hayden, L.M. Fully atomistic modeling of an electric field poled guest-host nonlinear optical polymer. J. Chem. Phys. 1999, 111, 5212–5222. [Google Scholar] [CrossRef] [Green Version]
- Makowska-Janusik, M.; Reis, H.; Papadopoulos, M.G.; Economou, I.G.; Zacharopoulos, N. Molecular dynamics simulations of electric field poled nonlinear optical chromophores incorporated in a polymer matrix. J. Phys. Chem. B 2004, 108, 588–596. [Google Scholar] [CrossRef]
- Mann, I.; Yu, X.; Zhang, W.-B.; Van Horn, R.M.; Ge, J.J.; Graham, M.J.; Harris, F.W.; Cheng, S.Z.D. What Are The Differences of Polymer Surface Relaxation from the Bulk? Chin. J. Polym. Sci. 2011, 29, 81–86. [Google Scholar] [CrossRef]
- Makowska-Janusik, M.; Reis, H.; Papadopoulos, M.G.; Economou, I.G. Peculiarities of electric field alignment of nonlinear optical chromophores incorporated into thin film polymer matrix. Theor. Chem. Acc. 2005, 114, 153–158. [Google Scholar] [CrossRef]
- Mydlova, L.; Taboukhat, S.; Waszkowska, K.; Ibrahim, N.; Migalska-Zalas, A.; Sahraoui, B.; Frère, B.; Makowska-Janusik, M. Selected molecules based on (-1-cyanovinyl)benzonitrile as new materials for NLO applications-Experimental and computational studies. J. Mol. Liq. 2020, 314, 113622. [Google Scholar] [CrossRef]
- Trejo-Duran, M.; Alvarado-Mendez, E.; Castano, V.M. Self-Organized Patterns by Optical Nonlinearity in 4-(4-pentenyloxy)benzonitrile. Appl. Phys. Lett. 2009, 94, 2–023304. [Google Scholar] [CrossRef] [Green Version]
- Mills, L.R.; Edjoc, R.K.; Rousseaux, S.A.L. Desing of an Electron-Withdrawing Benzonitrile ligand for Ni-Catalyzed Cross-Coupling Involving Tertiary Nucleophiles. J. Am. Chem. Soc. 2021, 143, 27–10422. [Google Scholar] [CrossRef] [PubMed]
- Schendzielorz, F.; Finger, M.; Abbenseth, J.; Wurtele, C.; Krewald, V.; Schneider, S. Metal-Ligand Cooperative Sunthesis of Benzonitrile by Electrochemical Reduction and Photolytic Splitting of Dinitrogen. Angew. Chem. Int. Ed. 2019, 58, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.J.; et al. General atomic and molecular structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Gordon, M.S.; Schmidt, M.W. Advances in electronic structure theory: GAMESS a Decade Later. In Theory and Applications of Computational Chemistry: The First Forty Years; Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1167–1189. [Google Scholar] [CrossRef]
- Roothaan, C.C.J. New development in molecular orbital theory. Rev. Mod. Phys. 1951, 23, 69–89. [Google Scholar] [CrossRef]
- Jensen, F. Locating transition structures by mode following: A comparison of six methods on the Ar8 Lennard-Jones potential. J. Chem. Phys. 1995, 102, 6706–6718. [Google Scholar] [CrossRef] [Green Version]
- Aidas, K.; Angeli, C.; Bak, K.L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimiraglia, R.; Coriani, S.; Dahle, P.; et al. The Dalton quantum chemistry program system. Wiley Interdiscip. Revews Comput. Mol. Sci. 2014, 4, 269–284. [Google Scholar] [CrossRef]
- Abraham, M.; Hess, B.; Spoel, D.V.D.; Lindahl, E. Gromacs User Manual, Version 5.0.4. The GROMACS Development Team at the Royal Instituta of Technology and Uppsala University, Sweden, 2014. Available online: www.gromacs.org (accessed on 6 March 2022).
- Hagler, A.T.; Lifson, S.; Dauber, P. Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields. J. Am. Chem. Soc. 1979, 101, 5122–5130. [Google Scholar] [CrossRef]
- Fois, E.; Gamba, A.; Tilocca, A. On the unusual stability of Maya blue paint: Molecular dynamics simulations. Microporous Mesoporous Mater. 2003, 57, 263–272. [Google Scholar] [CrossRef]
- Kawata, M.; Nagashima, U. Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chem. Phys. Lett. 2001, 340, 165–172. [Google Scholar] [CrossRef]
- Deserno, M.; Holm, C. How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 1998, 109, 7678–7693. [Google Scholar] [CrossRef]
- Teng, H.; Koike, K.; Zhou, D.; Satoh, Z.; Koike, Y.; Okamoto, Y. High Glass Transition Temperatures of Poly(methyl methacrylate) Prepared by Free Radical Initiators. J. Polym. Sci. Part A Polym. Chem. 2008, 47, 315–317. [Google Scholar] [CrossRef]
- Reyna-González, J.M.; Roquero, P.; Rivera, E. A Comparative Investigation Between Poly(N-vinylcarbazole) and Poly(3,6-N-vinylcarbazole): Spectroscopy, Conductivity, Thermal and Optical Properties. Des. Monomers Polym. 2009, 12, 233–245. [Google Scholar] [CrossRef]
- Sahraoui, B.; Luc, J.; Meghea, A.; Czaplicki, R.; Fillaut, J.L.; Migalska-Zalas, A. Nonlinear optics and surface relief gratings in alkynyl–ruthenium complexes. J. Opt. A Pure Appl. Opt. 2009, 11, 024005. [Google Scholar] [CrossRef]
- Zawadzka, A.; Waszkowska, K.; Karakas, A.; Płóciennik, P.; Korcala, A.; Wisniewski, K.; Karakaya, M.; Sahraoui, B. Diagnostic and control of linear and nonlinear optical effects in selected self-assembled metallophthalocyanine chlorides nanostructures. Dye. Pigment. 2018, 157, 151–162. [Google Scholar] [CrossRef]
- Kajzar, F.; Lee, K.S.; Jen, A.K.Y. Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics. In Polymers for Photonics Applications II; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 161. [Google Scholar] [CrossRef]
- Reis, H.; Makowska-Janusik, M.; Papadopoulos, M.G. Nonlinear Optical Susceptibilities of Poled Guest-Host Systems: A Computational Approach. J. Phys. Chem. B 2004, 108, 8931–8940. [Google Scholar] [CrossRef]
- Lee, G.J.; Cha, S.W.; Jeon, S.J.; Jin, J.I.; Yoon, J.S. Second-order nonlinear optical properties of unpoled bent molecules in powder and in vacuum-deposited film. J. Korean Phys. Soc. 2001, 39, 912–915. [Google Scholar]
- Kajzar, F.; Okada-Shudo, Y.; Merrit, C.; Kafafi, C. Second- and third-order non-linear optical properties of multilayered structures and composites of C60 with electron donors. Synth. Met. 2001, 117, 189–193. [Google Scholar] [CrossRef]
- Kubodera, K.; Kobayashi, H. Determination of third-order nonlinear optical susceptibilities for organic materials by third-harmonic generation. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1990, 182, 103–113. [Google Scholar] [CrossRef]
- Jerphagnon, J.; Kurtz, S.K. Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals. J. Appl. Phys. 1970, 41, 1667. [Google Scholar] [CrossRef]
- Prasad, P.N.; Williams, D.J. Introduction to Nonlinear Optical Effects in Molecules and Polymer; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Ferrero, M.; Civalleri, B.; Rérat, M.; Orlando, R.; Dovesi, R. The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree–Fock and density functional theory results obtained with the periodic coupled perturbed Hartree–Fock/Kohn–Sham scheme. J. Chem. Phys. 2009, 131, 214704. [Google Scholar] [CrossRef] [PubMed]
- Mydlova, L.; Taboukhat, S.; Ayadi, A.; Migalska-Zalas, A.; El-Ghayoury, A.; Zawadzka, A.; Makowska-Janusik, M.; Sahraoui, B. Theoretical and experimental investigation of multifunctional highly conjugated organic push-pull ligands for NLO applications. Opt. Mater. 2018, 86, 304–310. [Google Scholar] [CrossRef]
- Migalska-Zalas, A.; EL Korchi, K.; Chtouki, T. Enhanced nonlinear optical properties due to electronic delocalization in conjugated benzodifuran derivatives. Opt. Quantum Electron. 2018, 50, 389. [Google Scholar] [CrossRef] [Green Version]
- Taghinejad, M.; Xu, Z.; Lee, K.-T.; Lian, T.; Cai, W. Transient Second-Order Nonlinear Media: Breaking the Spatial Symmetry in the Time Domain via Hot-Electron Transfer. Phys. Rev. Lett. 2020, 124, 013901. [Google Scholar] [CrossRef]
- Taghinejad, M.; Cai, W. All-Optical Control of Light in Micro—And Nanophotonics. ACS Photonics 2019, 6, 1082–1093. [Google Scholar] [CrossRef]
- Mohamed, P.A.; Wadsworth, W.J. Self-phase modulation and spectral broadening in millimeter long self-written polymer waveguide integrated with single mode fibers. Opt. Mater. 2018, 86, 172–177. [Google Scholar] [CrossRef]
Sample | Chemical Structure | Thin Film |
---|---|---|
Complex A 5 wt% | ||
Complex A 10 wt% | ||
Complex B 5 wt% | ||
Complex B 10 wt% | ||
Complex C 5 wt% | ||
Complex C 10 wt% |
Molecule | A | B | C | |||
---|---|---|---|---|---|---|
Electric field Fx,Fy,Fz [GV/m] | 0, 0, 0 | 1.62, 1.86, 0.69 | 0, 0, 0 | 0.91, −1.31, −0.93 | 0, 0, 0 | −1.03, −0.16, 3.82 |
μ [D] | 7.48 | 8.26 | 6.88 | 6.20 | 5.02 | 12.39 |
HOMO [eV] | −8.26 | −7.14 | −8.29 | −8.80 | −7.90 | −5.30 |
LUMO [eV] | 0.72 | 1.68 | 0.44 | −0.38 | 0.55 | 0.35 |
ΔEHOMO-LUMO [eV] | 8.98 | 8.82 | 8.73 | 8.42 | 8.45 | 5.65 |
λ = ∞ nm | ||||||
αxx | 202.37 | 202.54 | 125.65 | 125.76 | 324.57 | 330.38 |
αyy | 103.10 | 103.19 | 249.38 | 249.60 | 302.48 | 301.64 |
αzz | 284.75 | 283.97 | 338.22 | 338.88 | 422.19 | 430.97 |
αav | 196.74 | 196.57 | 237.75 | 238.08 | 349.75 | 354.33 |
β(z;z,z) | 1241.12 | 1140.79 | 1204.01 | 1325.92 | 577.38 | 2634.78 |
β(y;y,y) | 11.75 | 84.43 | −456.22 | −552.36 | −122.93 | −184.25 |
β(x;x,x) | 258.13 | 191.98 | −27.93 | 18.48 | 228.04 | 886.73 |
β(z) | 839.62 | 1614.11 | 1792.10 | 1953.61 | 761.32 | 4080.97 |
β(y) | 161.67 | 272.13 | −1358.69 | −1616.80 | 153.15 | 506.09 |
β(x) | 1201.90 | 1032.03 | 287.80 | 392.50 | 691.34 | 2610.98 |
βvec | 1475.01 | 1935.07 | 2267.26 | 1164.73 | 1039.72 | 4871.10 |
γ(z;z,z,z) | 208,040.85 | 200,317.58 | 263,309.47 | 273,839.92 | 273,389.68 | 457,070.81 |
γ(y,y,y,y) | 19,477.92 | 20,032.40 | 117,496.68 | 119,559.23 | 100,163.57 | 102,105.10 |
γ(x,x,x,x) | 49,115.54 | 50,269.74 | 25,541.68 | 25,684.65 | 113,038.68 | 167,368.97 |
γvec | 100,789.57 | 98,809.38 | 163,926.96 | 168,691.04 | 173,638.70 | 120,339.68 |
λ = 1064 nm | ||||||
αxx | 205.67 | 205.85 | 126.81 | 126.76 | 330.32 | 336.85 |
αyy | 103.86 | 103.95 | 254.61 | 249.60 | 307.44 | 306.58 |
αzz | 295.62 | 294.75 | 351.91 | 338.88 | 433.84 | 444.11 |
αav | 201.72 | 201.52 | 244.44 | 238.41 | 357.20 | 362.51 |
β(z;z,z) | 2064.29 | 1888.23 | 2186.69 | 2420.72 | 961.18 | 4502.21 |
β(y;y,y) | 13.76 | 96.30 | −695.71 | −827.07 | −150.87 | −230.18 |
β(x;x,x) | 368.09 | 290.41 | −34.04 | 19.55 | 340.76 | 1465.61 |
β(z) | 2766.83 | 2581.94 | 3153.36 | 3473.87 | 1279.00 | 6836.45 |
β(y) | 235.78 | 359.37 | −2210.82 | −2596.59 | 240.71 | 886.64 |
β(x) | 1789.19 | 1560.42 | 473.16 | 611.72 | 1056.34 | 4419.36 |
βvec | 3303.35 | 3038.17 | 3880.11 | 2387.40 | 1676.20 | 8188.65 |
γ(z;z,z,z) | 822,873.92 | 779,529.69 | 1,220,822.88 | 1,295,989.98 | 836,301.70 | 2,839,445.09 |
γ(y,y,y,y) | 25,252.81 | 26,348.88 | 359,805.25 | 373,794.63 | 170,852.50 | 177,345.01 |
γ(x,x,x,x) | 116,815.30 | 118,530.66 | 34,558.06 | 34,849.19 | 255,860.36 | 695,963.78 |
γvec | 321,647.34 | 308,136.41 | 538,395.40 | 568,211.27 | 421,004.85 | 1,237,584.63 |
Sample | Thickness [nm] | α355nm [103 cm−1] | χ(2) [pmV−1] | χ(3) [10−22 m2V−2] | |
---|---|---|---|---|---|
s-p | p-p | p-p | |||
Quartz | 1000 | - | 1.00 | - | |
Silica | - | 2.00 | |||
A 5 wt% | 360 | 10.72 | 0.085 ± 0.028 | 0.114 ± 0.030 | 24.75 ± 0.75 |
A 10 wt% | 320 | 14.09 | 0.111 ± 0.028 | 0.214 ± 0.022 | 27.61 ± 0.93 |
B 5 wt% | 570 | 16.03 | 0.124 ± 0.008 | 0.319 ± 0.008 | 14.45 ± 0.32 |
B 0 wt% | 410 | 18.26 | 0.162 ± 0.012 | 0.373 ± 0.013 | 19.38 ± 0.55 |
C 5 wt% | 510 | 10.25 | 0.187 ± 0.008 | 0.396 ± 0.009 | 19.72 ± 0.45 |
C 10 wt% | 460 | 16.27 | 0.269 ± 0.009 | 0.446 ± 0.012 | 25.71 ± 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mydlova, L.; Sahraoui, B.; Waszkowska, K.; El Karout, H.; Makowska-Janusik, M.; Migalska-Zalas, A. Computational and Experimental Study of Nonlinear Optical Susceptibilities of Composite Materials Based on PVK Polymer Matrix and Benzonitrile Derivatives. Materials 2022, 15, 2073. https://doi.org/10.3390/ma15062073
Mydlova L, Sahraoui B, Waszkowska K, El Karout H, Makowska-Janusik M, Migalska-Zalas A. Computational and Experimental Study of Nonlinear Optical Susceptibilities of Composite Materials Based on PVK Polymer Matrix and Benzonitrile Derivatives. Materials. 2022; 15(6):2073. https://doi.org/10.3390/ma15062073
Chicago/Turabian StyleMydlova, Lucia, Bouchta Sahraoui, Karolina Waszkowska, Houda El Karout, Malgorzata Makowska-Janusik, and Anna Migalska-Zalas. 2022. "Computational and Experimental Study of Nonlinear Optical Susceptibilities of Composite Materials Based on PVK Polymer Matrix and Benzonitrile Derivatives" Materials 15, no. 6: 2073. https://doi.org/10.3390/ma15062073
APA StyleMydlova, L., Sahraoui, B., Waszkowska, K., El Karout, H., Makowska-Janusik, M., & Migalska-Zalas, A. (2022). Computational and Experimental Study of Nonlinear Optical Susceptibilities of Composite Materials Based on PVK Polymer Matrix and Benzonitrile Derivatives. Materials, 15(6), 2073. https://doi.org/10.3390/ma15062073