Synthesis of In Situ ZrB2-SiC-ZrC Coating on ZrC-SiC Substrate by Reactive Plasma Spraying
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Opeka, M.M.; Talmy, I.G.; Wuchina, E.J.; Zaykoskia, J.A.; Causeyb, S.J. Mechanical, Thermal, and Oxidation Properties of Refractory Hafnium and Zirconium Compounds. J. Eur. Ceram. Soc. 1999, 19, 2405–2414. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, T.; Ikawa, K. High-temperature Heating Experiments on Unirradiated ZrC Coated Fuel Particles. J. Nucl. Phys. Mater. Sci. Radiat. Appl. 1981, 99, 85–93. [Google Scholar] [CrossRef]
- Feng, L.; Fahrenholtz, W.G.; Hilmas, G.E. Effect of ZrB2 Content on the Densification, Microstructure, and Mechanical Properties of ZrC-SiC Ceramics. J. Eur. Ceram. Soc. 2019, 40, 220–225. [Google Scholar] [CrossRef]
- Tului, M.; Marino, G.; Valente, T. Plasma Spray Deposition of Ultra High Temperature Ceramics. Surf. Coat. Technol. 2006, 201, 2103–2108. [Google Scholar] [CrossRef]
- Monteverde, F.; Savino, R. Stability of Ultra-high-temperature ZrB2-SiC Ceramics under Simulated Atmospheric Re-entry Conditions. J. Eur. Ceram. Soc. 2007, 27, 4797–4805. [Google Scholar] [CrossRef]
- Bartuli, C.; Valente, T.; Tului, M. Plasma Spray Deposition and High Temperature Characterization of ZrB2-SiC Protective Coatings. Surf. Coat. Technol. 2002, 155, 260–273. [Google Scholar] [CrossRef]
- Yao, X.Y.; Li, H.J.; Zhang, Y.L.; Li, K.Z.; Fu, Q.G.; Peng, H. Ablation Behavior of ZrB2-based Coating Prepared by Supersonic Plasma Spraying for SiC-coated C/C Composites under Oxyacetylene Torch. J. Therm. Spray Technol. 2013, 22, 531–537. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Hu, Z.X.; Yang, B.X.; Ren, J.C.; Li, H.J. Effect of Pre-oxidation on the Ablation Resistance of ZrB2-SiC Coating for SiC-coated Carbon/Carbon Composites. Ceram. Int. 2015, 41, 2582–2589. [Google Scholar] [CrossRef]
- Alosime, E.M.; Alsuhybani, M.S.; Almeataq, M.S. The Oxidation Behavior of ZrB2-SiC Ceramic Composites Fabricated by Plasma Spray Process. Materials 2021, 14, 392. [Google Scholar] [CrossRef]
- Mallik, M.; Kailath, A.J.; Ray, K.K.; Mitraa, R. Electrical and Thermophysical Properties of ZrB2 and HfB2 Based Composites. J. Eur. Ceram. Soc. 2012, 32, 2545–2555. [Google Scholar] [CrossRef]
- Wu, H.; Li, H.J.; Fu, Q.G.; Yao, D.J.; Wang, Y.J.; Chao, M.; Wei, J.F.; Han, Z.H. Microstructures and Ablation Resistance of ZrC Coating for SiC-coated Carbon/Carbon Composites Prepared by Supersonic Plasma Spraying. J. Therm. Spray Technol. 2011, 20, 1286–1291. [Google Scholar] [CrossRef]
- Kim, K.H.; Shim, K.B. The Effect of Lanthanum on the Fabrication of ZrB2-ZrC Composites by Spark Plasma Sintering. Mater. Character 2003, 50, 31–37. [Google Scholar] [CrossRef]
- Yan, D.R.; Dai, X.R.; Yang, Y.; Dong, Y.C.; Chen, X.G.; Chu, Z.H.; Zhang, J.X. Microstructure and Properties of in-situ Ceramic Matrix Eutectic Nanocomposite Coating Prepared by Plasma Spraying Al-Cr2O3-Al2O3 powder. J. Alloys Compd. 2018, 748, 230–235. [Google Scholar] [CrossRef]
- Xu, J.Y.; Zou, B.L.; Fan, X.Z.; Zhao, S.M.; Hui, Y.; Wang, Y.; Zhao, X.; Cai, X.L.; Tao, S.Y.; Ma, H.M.; et al. Reactive Plasma Spraying Synthesis and Characterization of TiB2-TiC-Al2O3/Al Composite Coatings on a Magnesium Alloy. J. Alloys Compd. 2014, 596, 10–18. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, S.G.; Park, J.S.; Kim, H.G. Laser Surface Modification of Ti and TiC Coatings on Magnesium Alloy. Phys. Met. Metallogr. 2014, 115, 1389–1394. [Google Scholar] [CrossRef]
- Liu, H.Y.; Huang, J.H.; Yin, C.F.; Zhang, J.G.; Lin, G.B. Microstructure and Properties of TiC-Fe Cermet Coatings by Reactive Flame Spraying Using Asphalt as Carbonaceous Precursor. Ceram. Int. 2007, 33, 827–835. [Google Scholar] [CrossRef]
- Ran, S.L.; Biest, O.V.; Vleugels, J. ZrB2-SiC Composites Prepared by Reactive Pulsed Electric Current Sintering. J. Eur. Ceram. Soc. 2010, 30, 2633–2642. [Google Scholar] [CrossRef]
- Qu, Q.; Han, J.C.; Han, W.B.; Zhang, X.H.; Hong, C.Q. In Situ Synthesis Mechanism and Characterization of ZrB2-ZrC-SiC Ultra High-temperature Ceramics. Mater. Chem. Phys. 2008, 110, 216–221. [Google Scholar] [CrossRef]
- Ma, B.X.; Han, W.B.; Guo, E.J. Oxidation Behavior of ZrC-based Composites in Static Laboratory Air up to 1300 °C. Int. J. Refract. Met. Hard Mater. 2014, 46, 159–167. [Google Scholar] [CrossRef]
- Ma, B.X.; Li, J.Y. ZrB2-SiC-ZrC Coating on ZrC Ceramics Deposited by Plasma Spraying. Results Phys. 2019, 15, 102550. [Google Scholar] [CrossRef]
- Liang, Y.H.; Han, Z.Z.; Lin, Z.H.; Ren, L.Q. Study on the Reaction Behavior of Self-propagating High-temperature Synthesis of TiC Ceramic in the Cu-Ti-C System. Int. J. Refract. Met. Hard Mater. 2012, 35, 221–227. [Google Scholar] [CrossRef]
- Singh, V.; Diaz, R.; Balani, K.; Agarwal, A.; Seal, S. Chromium Carbide-CNT Nanocomposites with Enhanced Mechanical Properties. Acta. Mater. 2009, 57, 335–344. [Google Scholar] [CrossRef]
- Kwei, G.H.; Morosin, B. Structures of the Boron-rich Boron Carbides from Neutron Powder Diffraction: Implications for the Nature of the Inter-icosahedral Chains. J. Phys. Chem. 1996, 100, 8031–8039. [Google Scholar] [CrossRef]
- Lazzari, R.; Vast, N.; Besson, J.M.; Baroni, S.; Corso, A.D. Atomic Structure and Vibrational Properties of Icosahedral B4C Boron Carbide. Phys. Rev. Lett. 1999, 83, 3230–3233. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.; Zou, B.L.; Jin, S.B.; Jiang, Q.C. Reaction Mechanism in Self-propagating High Temperature Ssynthesis of TiC-TiB2/Al Composites From an Al-Ti-B4C System. Mater. Sci. Eng. A 2007, 454–455, 300–309. [Google Scholar] [CrossRef]
- Wu, W.W.; Zhang, G.J.; Kan, Y.M.; Wang, P.L. Reactive Hot Pressing of ZrB2-SiC-ZrC Ultra High-temperature Ceramics at 1800 °C. J. Am. Ceram. Soc. 2006, 89, 2967–2969. [Google Scholar] [CrossRef]
- Monteverde, F. Progress in the Fabrication of Ultra-high-temperature Ceramics: “In Situ” Synthesis, Microstructure and Properties of a Reactive Hot-pressed HfB2-SiC Composite. Compos. Sci. Technol. 2005, 65, 1869–1879. [Google Scholar] [CrossRef]
- Jimenez, I.; Sutherland, D.G.J.; van Buuren, T.; Carlisle, J.A.; Terminello, L.J.; Himpsel, F.J. Photoemission and X-ray-absorption Study of Boron Carbide and Its Surface Thermal Stability. Phys. Rev. B 1998, 57, 13167–13174. [Google Scholar] [CrossRef]
- Tului, M.; Giambi, B.; Lionetti, S.; Pulci, G.; Sarasini, F.; Valente, T. Silicon Carbide Based Plasma Sprayed Coatings. Surf. Coat. Technol. 2012, 207, 182–189. [Google Scholar] [CrossRef]
- Bianchi, L.; Leger, A.C.; Vardelle, M.; Vardelle, A.; Fauchais, P. Splat Formation and Cooling of Plasma-sprayed Zirconia. Thin Solid Films 1997, 305, 35–47. [Google Scholar] [CrossRef]
- Baik, K.H.; Seok, H.K.; Kim, H.S.; Grant, P.S. Non-equilibrium Microstructure and Thermal Stability of Plasma-sprayed Al-Si Coatings. J. Mater. Res. 2005, 20, 2038–2045. [Google Scholar] [CrossRef]
- Deevi, S.C.; Sikka, V.K.; Swindeman, C.J.; Seals, R.D. Application of Reaction Synthesis Principles to Thermal Spray Coatings. J. Mater. Sci. 1997, 32, 3315–3325. [Google Scholar] [CrossRef]
Sample Number | Spraying Current (A) | Spraying Voltage (V) | Primary Gas Ar (L/min) | Second Gas H2 (L/min) | Carrier Gas Ar (L/min) | Spraying Distance (mm) |
---|---|---|---|---|---|---|
1 | 550 | 64 | 35 | 12 | 2.5 | 80 |
2 | 600 | 64 | 35 | 12 | 2.5 | 80 |
3 | 600 | 64 | 35 | 12 | 2.5 | 100 |
4 | 600 | 64 | 35 | 12 | 2.5 | 140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, B.-X.; Wang, Y.; Zhao, S.-C.; Wu, H.-N.; Qiao, Y. Synthesis of In Situ ZrB2-SiC-ZrC Coating on ZrC-SiC Substrate by Reactive Plasma Spraying. Materials 2022, 15, 2217. https://doi.org/10.3390/ma15062217
Ma B-X, Wang Y, Zhao S-C, Wu H-N, Qiao Y. Synthesis of In Situ ZrB2-SiC-ZrC Coating on ZrC-SiC Substrate by Reactive Plasma Spraying. Materials. 2022; 15(6):2217. https://doi.org/10.3390/ma15062217
Chicago/Turabian StyleMa, Bao-Xia, Yang Wang, Si-Cong Zhao, Hao-Nan Wu, and Yang Qiao. 2022. "Synthesis of In Situ ZrB2-SiC-ZrC Coating on ZrC-SiC Substrate by Reactive Plasma Spraying" Materials 15, no. 6: 2217. https://doi.org/10.3390/ma15062217
APA StyleMa, B. -X., Wang, Y., Zhao, S. -C., Wu, H. -N., & Qiao, Y. (2022). Synthesis of In Situ ZrB2-SiC-ZrC Coating on ZrC-SiC Substrate by Reactive Plasma Spraying. Materials, 15(6), 2217. https://doi.org/10.3390/ma15062217