Removal of Thiol-SAM on a Gold Surface for Re-Use of an Interdigitated Chain-Shaped Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacture of the Interdigitated Chain Shaped-Electrode (ICE)
2.3. Deposition of the Self-Assembled Monolayer (SAM) on the ICE. Removing the SAM on the Surface of ICE. Re-Depositing the SAM on the ICE
2.4. Structural Characterization
2.5. Electrochemical Characterization
3. Results and Discussion
3.1. XPS and FT-IR Results of ICE, ICE/SAM, and Re-ICE
3.2. Electrochemical Characterization of the ICE, ICE/SAM, and Re-ICE, and the Application of Re-ICE for the Deposition of the SAM on the Electrode Surface
3.3. Efficiency Percentage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassanien, A.S.; Akl, A.A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 2016, 89, 153–169. [Google Scholar] [CrossRef]
- Hannachi, A.; Segura, A.; Meherzi, H.M. Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological, optical properties. Mater. Chem. Phys. 2016, 181, 326–332. [Google Scholar] [CrossRef]
- Le, H.T.N.; Kim, D.S.; Phan, L.M.T.; Cho, S.B. Ultrasensitive capacitance sensor to detect amyloid-beta 1–40 in human serum using supramolecular recognition of β-CD/RGO/ITO micro-disk electrode. Talanta 2022, 237, 122907. [Google Scholar] [CrossRef] [PubMed]
- Lanzutti, A.; Lekka, M.; Leitenburg, C.; Fedrizzi, L. Effect of pulse current on wear behavior of Ni matrix micro-and nano-SiC composite coatings at room and elevated temperature. Tribol. Int. 2019, 132, 50–61. [Google Scholar] [CrossRef]
- Shourgeshty, M.; Aliofkhazraei, M.; Karimzadeh, A. Study on functionally graded Zn–Ni–Al2O3 coatings fabricated by pulse-electrodeposition. Surf. Eng. 2019, 35, 167–176. [Google Scholar] [CrossRef]
- Tseluikin, V.N.; Solov′eva, N.D.; Gun′kin, I.F. Electrodeposition of Nickel–Fullerene C60 Composition Coatings. Prot. Met. 2007, 43, 388–390. [Google Scholar] [CrossRef]
- Lokhande, A.C.; Chalapathy, R.B.V.; He, M.; Jo, E.; Gang, M.; Pawar, S.A.; Lokhande, C.D.; Kim, J.H. Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review. Sol. Energy Mater. Sol. Cells 2016, 153, 84–107. [Google Scholar] [CrossRef]
- Lorenz, M.; Rao, M.S.R. 25 years of pulsed laser deposition. J. Phys. D. Appl. Phys. 2014, 47, 030301–030303. [Google Scholar] [CrossRef]
- Yagati, A.K.; Le, H.T.N.; Cho, S.B. Bioelectrocatalysis of Hemoglobin on Electrodeposited Ag Nanoflowers toward H2O2 Detection. Nanomaterials 2020, 10, 1628. [Google Scholar] [CrossRef]
- Le, H.T.N.; Park, J.S.; Chinnadayyala, S.R.; Cho, S.B. Sensitive electrochemical detection of amyloid beta peptide in human serum using an interdigitated chain-shaped electrode. Biosens. Bioelectron. 2019, 144, 111694. [Google Scholar]
- Le, H.T.N.; Cho, S.B. Deciphering the Disaggregation Mechanism of Amyloid Beta Aggregate by 4-(2-Hydroxyethyl)-1-Piperazinepropanesulfonic Acid Using Electrochemical Impedance Spectroscopy. Sensors 2021, 21, 788. [Google Scholar] [CrossRef] [PubMed]
- Le, H.T.N.; Park, J.S.; Cho, S.B. A Probeless Capacitive Biosensor for Direct Detection of Amyloid Beta 1-42 in Human Serum Based on an Interdigitated Chain-Shaped Electrode. Micromachines 2020, 11, 791. [Google Scholar] [CrossRef] [PubMed]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.; Konno, K.; Ito, E.; Hara, M. Growth Processes and Control of Two-Dimensional Structure of Carboxylic Acid-Terminated Self-Assembled Monolayers on Au(111). Jpn. J. Appl. Phys. 2005, 44, 1052–1054. [Google Scholar] [CrossRef]
- Tao, F.; Bernasek, S.L. Understanding Odd−Even Effects in Organic Self-Assembled Monolayers. Chem. Rev. 2007, 107, 1408–1453. [Google Scholar] [CrossRef]
- Swiegers, G.F.; Malefetse, T.J. New Self-Assembled Structural Motifs in Coordination Chemistry. Chem. Rev. 2000, 100, 3483–3538. [Google Scholar] [CrossRef]
- Manickam, A.; Johnson, C.A.; Kavusi, S.; Hassibi, A. Interface Design for CMOS-Integrated Electrochemical Impedance Spectroscopy (EIS) Biosensors. Sensors 2012, 12, 14467–14488. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, A.; Blues, E.; Williamson, P.; Cardona, M.; Gray, L.; Corrigan, D.K. SAM Composition and Electrode Roughness Affect Performance of a DNA Biosensor for Antibiotic Resistance. Biosensors 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Mescola, A.; Canale, C.; Prato, M.; Diaspro, A.; Berdondini, L.; Maccione, A.; Dante, S. Specific Neuron Placement on Gold and Silicon Nitride-Patterned, Substrates through a Two-Step Functionalization Method. Langmuir 2016, 32, 6319–6327. [Google Scholar] [CrossRef]
- Tawil, N.; Sacher, E.; Mandeville, R.; Meunier, M. Strategies for the Immobilization of Bacteriophages on Gold Surfaces Monitored by Surface Plasmon Resonance and Surface Morphology. J. Phys. Chem. C 2013, 117, 6686–6691. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Y.J. Physisorption and Chemisorption of a Self-Assembled Monolayer by the Quartz Crystal Microbalance. Langmuir 2014, 30, 9637–9642. [Google Scholar] [CrossRef]
- Luan, Y.F.; Li, D.; Wang, Y.W.; Liu, X.L.; Brash, J.L.; Chen, H. 125I-Radiolabeling, Surface Plasmon Resonance, and Quartz Crystal Microbalance with Dissipation: Three Tools to Compare Protein Adsorption on Surfaces of Different Wettability. Langmuir 2014, 30, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Hromadová, M.; Pospíšil, L.; Sokolová, R.; Bulíčková, J.; Hof, M.; Fischer-Durand, N.; Salmain, M. Atrazine-Based Self-Assembled Monolayers and Their Interaction with Anti-Atrazine Antibody: Building of an Immunosensor. Langmuir 2013, 29, 16084–16092. [Google Scholar] [CrossRef]
- Shimazu, K.; Yag, I.; Sato, Y.; Uosaki, K. In situ and dynamic monitoring of the self-assembling and redox processes of a ferrocenylundecanethiol monolayer by electrochemical quartz crystal microbalance. Langmuir 1992, 8, 1385–1387. [Google Scholar] [CrossRef]
- Karpovich, D.S.; Blanchard, G.J. Direct Measurement of the Adsorption Kinetics of Alkanethiolate Self-Assembled Monolayers on a Microcrystalline Gold Surface. Langmuir 1994, 10, 3315–3322. [Google Scholar] [CrossRef]
- Maglio, O.; Costanzo, S.; Cercola, R.; Zambrano, G.; Mauro, M.; Battaglia, R.; Ferrini, G.; Nastri, F.; Pavone, V.; Lombardi, A. A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction. Sensors 2017, 17, 2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazlan, N.S.; Ramli, M.M.; Abdullah, M.M.A.B.; Halin, D.S.C.; Isa, S.S.M.; Talip, L.F.A.; Danial, N.S.; Murad, S.A.Z. Interdigitated electrodes as impedance and capacitance biosensors: A review. AIP Conf. Proc. 2017, 1885, 020276. [Google Scholar]
- Ni, D.; Heisser, R.; Davaji, B.; Ivy, L.; Shepherd, R.; Lal, A. Polymer interdigitated pillar electrostatic (PIPE) actuators. Microsyst. Nanoeng. 2022, 8, 18. [Google Scholar] [CrossRef] [PubMed]
- Yagati, A.K.; Park, J.S.; Kim, J.S.; Ju, H.K.; Chang, K.A.; Cho, S.B. Sensitivity enhancement of capacitive tumor necrosis factor-α detection by deposition of nanoparticles on interdigitated electrode. Jpn. J. Appl. Phys. 2016, 55, 06GN06. [Google Scholar] [CrossRef]
- MacKay, S.; Hermansen, P.; Wishart, D.; Chen, J. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications. Sensors 2015, 15, 22192–22208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.S.; Cho, S.B. Development of Interdigitated and Chain-Shaped Electrode Array for Electric Cell-Substrate Impedance Sensing. J. Nanosci. Nanotechnol. 2016, 16, 11911–11915. [Google Scholar] [CrossRef]
- Park, J.S.; Hwang, K.S.; Cho, S.B. Dependence of Impedance Measurement Sensitivity of Cell Growth on Sensing Area of Circular Interdigitated Electrode. J. Nanosci. Nanotechnol. 2015, 15, 7886–7890. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.J.; Buhlmann, P. Minimizing hazardous waste in the undergraduate analytical laboratory: A microcell for electrochemistry. J. Chem. Educ. 2010, 87, 1260–1261. [Google Scholar] [CrossRef]
- Khafaji, M.; Shahrokhian, S.; Ghalkhani, M. Electrochemistry of levo-thyroxin on edgeplane pyrolytic graphite electrode: Application to sensitive analytical determinations. Electroanalysis 2011, 23, 1875–1880. [Google Scholar] [CrossRef]
- Fischer, J.; Dejmkova, H.; Barek, J. Electrochemistry of pesticides and its analytical applications. Curr. Org. Chem. 2011, 15, 2923–2935. [Google Scholar] [CrossRef]
- Vidal, C.V.; Muñoz, A.I. Effect of physico-chemical properties of simulated body fluids on the electrochemical behaviour of CoCrMo alloy. Electrochim. Acta 2011, 56, 8239–8248. [Google Scholar] [CrossRef]
- Wolner, C.; Nauer, G.E.; Trummer, J.; Putz, V.; Tschegg, S. Possible reasons for the unexpected bad biocompatibility of metal-on-metal hip implants. Mater. Sci. Eng. C 2006, 26, 34–40. [Google Scholar] [CrossRef]
- Xhoffer, C.; Bergh, K.V.; Dillen, H. Electrochemistry: A powerful analytical tool in steel research. Electrochim. Acta 2004, 49, 2825–2831. [Google Scholar] [CrossRef]
- Macdonald, J.R. Impedance spectroscopy. Ann. Biomed. Eng. 1992, 20, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Koch, N.; Kahn, A.; Ghijsen, J.; Pireaux, J.J.; Schwartz, J.; Johnson, R.L.; Elschner, A. Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Appl. Phys. Lett. 2003, 82, 70–72. [Google Scholar] [CrossRef]
- Fisher, G.L.; Walker, A.V.; Hooper, A.E.; Tighe, T.B.; Bahnck, K.B.; Skriba, H.T.; Reinard, M.D.; Haynie, B.C.; Opila, R.L.; Winograd, N.; et al. Bond Insertion, Complexation, and Penetration Pathways of Vapor-Deposited Aluminum Atoms with HO- and CH3O-Terminated Organic Monolayers. J. Am. Chem. Soc. 2002, 124, 5528–5541. [Google Scholar] [CrossRef]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.M.; Jenkins, K.A.; Valdes-Garcia, A.; Small, J.P.; Farmer, D.B.; Avouris, P. Operation of Graphene Transistors at Gigahertz Frequencies. Nano Lett. 2008, 9, 422–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharmendar, R.; Leonard, F.R.; Gary, D.C.; Sanjay, K.B. Graphene field-effect transistors. J. Phys. D Appl. Phys. 2011, 44, 313001. [Google Scholar]
- Intemann, J.J.; Yao, K.; Li, Y.X.; Yip, H.L.; Xiang, X.Y.; Liang, P.W.; Chueh, C.C.; Ding, F.Z.; Yang, X.; Li, X.; et al. Highly efficient inverted organic solar cells through material and interfacial engineering of indacenodithieno[3,2-b]thiophene-based polymers and devices. Adv. Funct. Mater. 2013, 24, 1465–1473. [Google Scholar] [CrossRef]
- Worley, C.G.; Linton, R.W. Removing sulfur from gold using ultraviolet/ozone cleaning. J. Vac. Sci. Technol. A 1995, 13, 2281–2284. [Google Scholar] [CrossRef]
- Shadnam, M.R.; Amirfazli, A. Kinetics of alkanethiol monolayer desorption from gold in air. Chem. Commun. 2005, 38, 4869–4871. [Google Scholar] [CrossRef] [PubMed]
- Shadnam, M.R.; Kirkwood, S.E.; Fedosejevs, R.; Amirfazli, A. Thermo-kinetics study of laser-induced desorption of self-assembled monolayers from gold: Case of Laser Micropatterning. J. Phys. Chem. B 2005, 109, 11996–12002. [Google Scholar] [CrossRef]
- Campiña, J.M.; Martins, A.; Silva, F. A new cleaning methodology for efficient Au-SAM removal. Electrochim. Acta 2008, 53, 7681–7689. [Google Scholar] [CrossRef]
- Shepherd, J.L.; Kell, A.; Chung, E.; Sinclar, C.W.; Workentin, M.S.; Bizzotto, D. Selective reductive desorption of a SAM-coated gold electrode revealed using fluorescence microscopy. J. Am. Chem Soc. 2004, 126, 8329–8335. [Google Scholar] [CrossRef]
- Pinto, S.M.; Pinzón, E.F.; Meléndez, Á.M.; Méndez-Sánchez, S.; Miranda, D.A. Electrode cleaning and reproducibility of electrical impedance measurements of HeLa cells on aqueous solution. Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 2020, 44, 257–268. [Google Scholar] [CrossRef]
- Kılıç, Y.; Manickham, P.; Bhansali, S. Brief Fine Polishing of Thin-film Gold Electrode Sensors Leads to Better Reproducibility than Electrochemical Pretreatment. Int. J. Electrochem. Sci. 2020, 15, 5067–5075. [Google Scholar] [CrossRef]
- Micrux Technologies. Thin-Film (Micro)electrodes Surface Cleaning & Activation; Micrux Technologies: Oviedo, Spain, 2017. [Google Scholar]
- Carvalhal, R.F.; Freire, R.S.; Kubota, L.T. Polycrystalline Gold Electrodes: A Comparative Study of Pretreatment Procedures Used for Cleaning and Thiol Self-Assembly Monolayer Formation. Electroanalysis 2005, 17, 1251–1259. [Google Scholar] [CrossRef]
- Möller, H.; Pistorius, P.C. The electrochemistry of gold-platinum alloys. J. Electroanal. Chem. 2004, 570, 243–255. [Google Scholar] [CrossRef]
- Korin, E.; Froumin, N.; Cohen, S. Surface Analysis of Nanocomplexes by X-ray Photoelectron Spectroscopy (XPS). ACS Biomater. Sci. Eng. 2017, 3, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Vitale, F.; Fratoddi, I.; Battocchio, C.; Piscopiello, E.; Tapfer, L.; Russo, M.V.; Polzonetti, G.; Giannini, C. Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: Synthesis and characterization. Nanoscale Res. Lett. 2011, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Tlili, A.; Abdelghani, A.; Hleli, S.; Maaref, M.A. Electrical Characterization of a Thiol SAM on Gold as a First Step for the Fabrication of Immunosensors based on a Quartz Crystal Microbalance. Sensors 2004, 4, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, K.C. Quantitative analysis of COOH-terminated alkanethiol SAMs on gold nanoparticle surfaces. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 045008. [Google Scholar] [CrossRef] [Green Version]
Electrode | Rct (kΩ) | Cdl (F) | Rs (kΩ) |
---|---|---|---|
ICE | 86 ± 1.0 | (11.8 × 10−7) ± 10−5 | 0.36 ± 10−4 |
ICE/SAM | 1900 ± 0.1 | (0.53 × 10−7) ± 10−3 | 0.35 ± 10−5 |
re-ICE | 87 ± 2.0 | (11.7 × 10−7) ± 10−5 | 0.35 ± 10−4 |
re-ICE/SAM | 1870 ± 0.1 | (0.54 × 10−7) ± 10−3 | 0.35 ± 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, H.T.N.; Phan, L.M.T.; Cho, S. Removal of Thiol-SAM on a Gold Surface for Re-Use of an Interdigitated Chain-Shaped Electrode. Materials 2022, 15, 2218. https://doi.org/10.3390/ma15062218
Le HTN, Phan LMT, Cho S. Removal of Thiol-SAM on a Gold Surface for Re-Use of an Interdigitated Chain-Shaped Electrode. Materials. 2022; 15(6):2218. https://doi.org/10.3390/ma15062218
Chicago/Turabian StyleLe, Hien T. Ngoc, Le Minh Tu Phan, and Sungbo Cho. 2022. "Removal of Thiol-SAM on a Gold Surface for Re-Use of an Interdigitated Chain-Shaped Electrode" Materials 15, no. 6: 2218. https://doi.org/10.3390/ma15062218
APA StyleLe, H. T. N., Phan, L. M. T., & Cho, S. (2022). Removal of Thiol-SAM on a Gold Surface for Re-Use of an Interdigitated Chain-Shaped Electrode. Materials, 15(6), 2218. https://doi.org/10.3390/ma15062218