Electrically Switchable Film Structure of Conjugated Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Substrates
2.3. Films Prepared by Electrically Controlled Horizontal-Dip (H-Dip) Coating
2.4. Microscopic Characterization
2.5. AFM Examination
2.6. ToF–SIMS Characterization
2.7. Ellipsometry Measurements
2.8. Voltage Variation in the Course of H-Dip Coating
2.9. Electrical Characterization
3. Results and Discussion
3.1. Electrically Modified Horizontal-Dip Coating
3.2. Film Morphology Switched by an Electric Field (E-Field)
3.3. E-Field Impact on Film Structure Formation
3.4. Morphologies Formed in Reversed and Zero E-Fields
3.5. Electrically Controlled Polythiophene Solubility
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheiko, S.S.; Zhou, J.; Arnold, J.; Neugebauer, D.; Matyjaszewski, K.; Tsitsilianis, C.; Tsukruk, V.V.; Carrillo, J.-M.Y.; Dobrynin, A.V.; Rubinstein, M. Perfect mixing of immiscible macromolecules at fluid interfaces. Nat. Mater. 2013, 12, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Moons, E. Conjugated polymer blends: Linking film morphology to performance of light emitting diodes and photodiodes. J. Phys. Condens. Matter 2002, 14, 12235–12260. [Google Scholar] [CrossRef]
- Corcoran, N.; Arias, A.C.; Kim, J.S.; MacKenzie, J.D.; Friend, R.H. Increased efficiency in vertically segregated thin-film conjugated polymer blends for light-emitting diodes. Appl. Phys. Lett. 2003, 82, 299–301. [Google Scholar] [CrossRef]
- Nelson, J. Polymer: Fullerene bulk heterojunction solar cells. Mater. Today 2011, 14, 462–470. [Google Scholar] [CrossRef]
- Björström Svanström, C.M.; Rysz, J.; Bernasik, A.; Budkowski, A.; Zhang, F.; Inganäs, O.; Andersson, M.R.; Magnusson, K.O.; Benson-Smith, J.J.; Nelson, J.; et al. Device performance of APFO-3/PCBM solar cells with controlled morphology. Adv. Mater. 2009, 21, 4398–4403. [Google Scholar] [CrossRef] [PubMed]
- Berggren, M.; Inganäs, O.; Gustafsson, G.; Rasmusson, J.; Andersson, M.R.; Hjertberg, T.; Wennerström, O. Light-emitting diodes with variable colours from polymer blends. Nature 1994, 372, 444–446. [Google Scholar] [CrossRef]
- Wang, X.; Lee, W.H.; Zhang, G.; Wang, X.; Kang, B.; Lu, H.; Qiu, L.; Cho, K. Self-stratified semiconductor/dielectric polymer blends: Vertical phase separation for facile fabrication of organic transistors. J. Mater. Chem. C 2013, 1, 3989–3998. [Google Scholar] [CrossRef]
- Arias, A.C.; Endicott, F.; Street, R.A. Surface-induced self-encapsulation of polymer thin-film transistors. Adv. Mater. 2006, 18, 2900–2904. [Google Scholar] [CrossRef]
- Dąbczyński, P.; Pawłowska, A.I.; Majcher-Fitas, A.M.; Stefańczyk, O.; Dłubacz, A.; Tomczyk, W.; Marzec, M.M.; Bernasik, A.; Budkowski, A.; Rysz, J. Extraordinary conduction increase in model conjugated/insulating polymer system induced by surface located electric dipoles. Appl. Mater. Today 2020, 21, 100880. [Google Scholar] [CrossRef]
- Fichet, G.; Corcoran, N.; Ho, P.K.H.; Arias, A.C.; MacKenzie, J.D.; Huck, W.T.S.; Friend, R.H. Self-organized photonic structures in polymer light-emitting diodes. Adv. Mater. 2004, 16, 1908–1912. [Google Scholar] [CrossRef]
- Chen, F.-C.; Lin, Y.-K.; Ko, C.-J. Submicron-scale manipulation of phase separation in organic solar cells. Appl. Phys. Lett. 2008, 92, 023307. [Google Scholar] [CrossRef] [Green Version]
- Salleo, A.; Arias, A.C. Solution based self-assembly of an array of polymeric thin-film transistors. Adv. Mater. 2007, 19, 3540–3543. [Google Scholar] [CrossRef]
- Jaczewska, J.; Budkowski, A.; Bernasik, A.; Raptis, I.; Moons, E.; Goustouridis, D.; Haberko, J.; Rysz, J. Ordering domains of spin cast blends of conjugated and dielectric polymers on surfaces patterned by soft- and photo-lithography. Soft Matter 2009, 5, 234–241. [Google Scholar] [CrossRef]
- Jaczewska, J.; Budkowski, A.; Bernasik, A.; Moons, E.; Rysz, J. Polymer vs Solvent Diagram of Film Structures Formed in Spin-Cast Poly(3-alkylthiophene) Blends. Macromolecules 2008, 41, 4802–4810. [Google Scholar] [CrossRef]
- Nie, Z.; Kumacheva, E. Patterning surfaces with functional polymers. Nat. Mater. 2008, 7, 277–290. [Google Scholar] [CrossRef]
- Schäffer, E.; Thurn-Albrecht, T.; Russell, T.P.; Steiner, U. Electrically induced structure formation and pattern transfer. Nature 2000, 403, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, Z.; Umar, A.; Wang, Y.; Yin, P. Electric-field induced layer-by-layer assembly technique with single component for construction of conjugated polymer films. RSC Adv. 2015, 5, 58499–58503. [Google Scholar] [CrossRef]
- Xi, K.; Krause, S. Droplet deformation and structure formation in two-phase polymer/polymer/toluene mixtures in an electric field. Macromolecules 1998, 31, 3974–3984. [Google Scholar] [CrossRef]
- Kikuchi, T.; Kudo, M.; Jing, C.; Tsukada, T.; Hozawa, M. Electrohydrodynamic Effect on Phase Separation Morphology in Polymer Blend Films. Langmuir 2004, 20, 1234–1238. [Google Scholar] [CrossRef]
- Park, B.; Han, M.-Y. Photovoltaic characteristics of polymer solar cells fabricated by pre-metered coating process. Opt. Express 2009, 17, 13830–13840. [Google Scholar] [CrossRef]
- Park, B.; Kwon, O.E.; Yun, S.H.; Jeon, H.G.; Huh, Y.H. Organic semiconducting layers fabricated by self-metered slot-die coating for solution-processable organic light-emitting devices. J. Mater. Chem. C 2014, 2, 8614–8621. [Google Scholar] [CrossRef]
- Gu, X.; Shaw, L.; Gu, K.; Toney, M.F.; Bao, Z. The meniscus-guided deposition of semiconducting polymers. Nat. Commun. 2018, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Josiek, M.; Marzec, M.M.; Moons, E. Pattern replication in blends of semiconducting and insulating polymers casted by horizontal dipping. J. Polym. Sci. Part B Polym. Phys. 2013, 51, 1419–1426. [Google Scholar] [CrossRef]
- Budkowski, A.; Zemła, J.; Moons, E.; Awsiuk, K.; Rysz, J.; Bernasik, A.; Björström-Svanström, C.M.; Lekka, M.; Jaczewska, J. Polymer blends spin-cast into films with complementary elements for electronics and biotechnology. J. Appl. Polym. Sci. 2012, 125, 4275–4284. [Google Scholar] [CrossRef]
- Zemła, J.; Lekka, M.; Raczkowska, J.; Bernasik, A.; Rysz, J.; Budkowski, A. Selective protein adsorption on polymer patterns formed by self-organization and soft lithography. Biomacromolecules 2009, 10, 2101–2109. [Google Scholar] [CrossRef]
- Awsiuk, K.; Petrou, P.; Thanassoulas, A.; Raczkowska, J. Orientation of Biotin-Binding Sites in Streptavidin Adsorbed onto the Surface of Polythiophene Films. Langmuir 2019, 35, 3058–3066. [Google Scholar] [CrossRef]
- Pierre, A.; Sadeghi, M.; Payne, M.M.; Facchetti, A.; Anthony, J.E.; Arias, A.C. All-printed flexible organic transistors enabled by surface tension-guided blade coating. Adv. Mater. 2014, 26, 5722–5727. [Google Scholar] [CrossRef] [PubMed]
- Magliulo, M.; De Tullio, D.; Vikholm-Lundin, I.; Albers, W.M.; Munter, T.; Manoli, K.; Palazzo, G.; Torsi, L. Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor. Anal. Bioanal. Chem. 2016, 408, 3943–3952. [Google Scholar] [CrossRef] [PubMed]
- Macchia, E.; Manoli, K.; Di Franco, C.; Picca, R.A.; Österbacka, R.; Palazzo, G.; Torricelli, F.; Scamarcio, G.; Torsi, L. Organic Field-Effect Transistor Platform for Label-Free, Single-Molecule Detection of Genomic Biomarkers. ACS Sens. 2020, 5, 1822–1830. [Google Scholar] [CrossRef]
- Kabra, D.; Singh, T.B.; Narayan, K.S. Semiconducting-polymer-based position-sensitive detectors. Appl. Phys. Lett. 2004, 85, 5073–5075. [Google Scholar] [CrossRef]
- Facchetti, A. Semiconductors for organic transistors. Mater. Today 2007, 10, 28–37. [Google Scholar] [CrossRef]
- Manjilli, H.K.; Danafar, H.; Sharafi, A. Assessment of biodegradability and cytotoxicity of mPEG-PCL diblock copolymers and PCL-PEG-PCL tri block copolymers on HEK293 cells. Sci. J. Kurd. Univ. Med. Sci. 2017, 22, 113–125. [Google Scholar]
- Tsougeni, K.; Petrou, P.S.; Awsiuk, K.; Marzec, M.M.; Ioannidis, N.; Petrouleas, V.; Tserepi, A.; Kakabakos, S.E.; Gogolides, E. Direct Covalent Biomolecule Immobilization on Plasma-Nanotextured Chemically Stable Substrates. ACS Appl. Mater. Interfaces 2015, 7, 14670–14681. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Moon, G.D.; Jeong, U. Continuous production of uniform poly(3-hexylthiophene) (P3HT) nanofibers by electrospinning and their electrical properties. J. Mater. Chem. 2009, 19, 743–748. [Google Scholar] [CrossRef]
- Kergoat, L.; Battaglini, N.; Miozzo, L.; Piro, B.; Pham, M.-C.; Yassar, A.; Horowitz, G. Use of poly(3-hexylthiophene)/poly(methyl methacrylate) (P3HT/PMMA) blends to improve the performance of water-gated organic field-effect transistors. Org. Electron. 2011, 12, 1253–1257. [Google Scholar] [CrossRef]
- Haq, E.U.; Toolan, D.T.W.; Emerson, J.A.; Epps, T.H., III; Howse, J.R.; Dunbar, A.D.F.; Ebbens, S.J. Real time laser interference microscopy for bar-spread polystyrene/poly(methyl methacrylate) blends. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 985–992. [Google Scholar] [CrossRef]
- Venugopal, G.; Krause, S. Development of Phase Morphologies of Poly(methyl methacrylate)-Polystyrene-Toluene Mixtures in Electric Fields. Macromolecules 1992, 25, 4626–4634. [Google Scholar] [CrossRef]
- Venugopal, G.; Krause, S.; Wnek, G.E. Morphological Variations in Polymer Blends Made in Electric Fields. Chem. Mater. 1992, 4, 1334–1343. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Wang, Y. The effect of the electric-field on the phase separation of semiconductor-insulator composite film. Chem. Commun. 2015, 51, 765–767. [Google Scholar] [CrossRef]
- Heriot, S.Y.; Jones, R.A.L. An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films. Nat. Mater. 2005, 4, 782–786. [Google Scholar] [CrossRef]
- Bernasik, A.; Włodarczyk-Miśkiewicz, J.; Łuzny, W.; Kowalski, K.; Raczkowska, J.; Rysz, J.; Budkowski, A. Lamellar structures formed in spin-cast blends of insulating and conducting polymers. Synth. Met. 2004, 144, 253–257. [Google Scholar] [CrossRef]
- Walheim, S.; Böltau, M.; Mlynek, J.; Krausch, G.; Steiner, U. Structure formation via polymer demixing in spin-cast films. Macromolecules 1997, 30, 4995–5003. [Google Scholar] [CrossRef]
- Mokarian-Tabari, P.; Geoghegan, M.; Howse, J.R.; Heriot, S.Y.; Thompson, R.L.; Jones, R.A.L. Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: Control of film structure through defined-atmosphere solvent-casting. Eur. Phys. J. E 2010, 33, 283–289. [Google Scholar] [CrossRef]
- Qiu, L.; Lim, J.A.; Wang, X.; Lee, W.H.; Hwang, M.; Cho, K. Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors. Adv. Mater. 2008, 20, 1141–1145. [Google Scholar] [CrossRef]
- Iyengar, N.A.; Harrison, B.; Duran, R.S.; Schanze, K.S.; Reynolds, J.R. Morphology Evolution in Nanoscale Light-Emitting Domains in MEH-PPV/PMMA Blends. Macromolecules 2003, 36, 8978–8985. [Google Scholar] [CrossRef]
- Kim, T.-H.; Hyun Song, S.; Kim, H.-J.; Oh, S.-H.; Han, S.-Y.; Kim, G.; Nah, Y.-C. Effects of oxidation potential and retention time on electrochromic stability of poly (3-hexyl thiophene) films. Appl. Surf. Sci. 2018, 442, 78–82. [Google Scholar] [CrossRef]
- Rodrigues, A.; Castro, M.C.R.; Farinha, A.S.F.; Oliveira, M.; Tomé, J.P.C.; Machado, A.V.; Raposo, M.M.M.; Hilliou, L.; Bernardo, G. Thermal stability of P3HT and P3HT:PCBM blends in the molten state. Polym. Test. 2013, 32, 1192–1201. [Google Scholar] [CrossRef]
- Fang, A.; Lin, S.; Ng, F.T.T.; Pan, Q. Synthesis of core-shell bottlebrush polymers of poly(polycaprolactone-b-polyethylene glycol) via ring-opening metathesis polymerization. J. Macromol. Sci. Part A Pure Appl. Chem. 2021, 1–11. [Google Scholar] [CrossRef]
- Kaminska, A.; Swiatek, M. Thermal and photochemical stability of poly (methyl methacrylate) and its blends with poly (vinyl acetate). J. Therm. Anal. 1996, 46, 1383–1390. [Google Scholar] [CrossRef]
- Xi, Y.; Pozzo, L.D. Electric field directed formation of aligned conjugated polymer fibers. Soft Matter 2017, 13, 3894–3908. [Google Scholar] [CrossRef]
- Lee, J.S.; Prabu, A.A.; Kim, K.J. UCST-type phase separation and crystallization behavior in poly(vinylidene fluoride)/poly(methyl methacrylate) blends under an external electric field. Macromolecules 2009, 42, 5660–5669. [Google Scholar] [CrossRef]
- Jacobs, I.E.; Aasen, E.W.; Oliveira, J.L.; Fonseca, T.N.; Roehling, J.D.; Li, J.; Zhang, G.; Augustine, M.P.; Mascal, M.; Moulé, A.J. Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: Effect of doping-induced aggregation on film morphology. J. Mater. Chem. C 2016, 4, 3454–3466. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, I.E.; Li, J.; Burg, S.L.; Bilsky, D.J.; Rotondo, B.T.; Augustine, M.P.; Stroeve, P.; Moulé, A.J. Reversible optical control of conjugated polymer solubility with sub-micrometer resolution. ACS Nano 2015, 9, 1905–1912. [Google Scholar] [CrossRef] [Green Version]
- Heeger, A.J. Semiconducting and metallic polymers: The fourth generation of polymeric materials. J. Phys. Chem. B 2001, 105, 8475–8491. [Google Scholar] [CrossRef]
- Giridharagopal, R.; Flagg, L.Q.; Harrison, J.S.; Ziffer, M.E.; Onorato, J.; Luscombe, C.K.; Ginger, D.S. Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors. Nat. Mater. 2017, 16, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Toušek, J.; Toušková, J.; Ludvík, J.; Liška, A.; Remeš, Z.; Kylián, O.; Kousal, J.; Chomutová, R.; Heckler, I.M.; Bundgaard, E.; et al. Comparison of the electron work function, hole concentration and exciton diffusion length for P3HT and PT prepared by thermal or acid cleavage. Solid-State Electron. 2016, 116, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Kepska, K.; Jarosz, T.; Januszkiewicz-Kaleniak, A.; Domagala, W.; Lapkowski, M.; Stolarczyk, A. Spectroelectrochemistry of poly(3-hexylthiophenes) in solution. Chem. Pap. 2018, 72, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maerten, C.; Jierry, L.; Schaaf, P.; Boulmedais, F. Review of Electrochemically Triggered Macromolecular Film Buildup Processes and Their Biomedical Applications. ACS Appl. Mater. Interfaces 2017, 9, 28117–28138. [Google Scholar] [CrossRef] [PubMed]
- Mayer, H.C.; Krechetnikov, R. Landau-Levich flow visualization: Revealing the flow topology responsible for the film thickening phenomena. Phys. Fluids 2012, 24, 052103. [Google Scholar] [CrossRef] [Green Version]
- Schneller, T.; Waser, R.; Kosec, M.; Payne, D. Chemical Solution Deposition of Functional Oxide Thin Films; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Clark, J.; Chang, J.F.; Spano, F.C.; Friend, R.H.; Silva, C. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 2009, 94, 117. [Google Scholar] [CrossRef]
- Cook, S.; Furube, A.; Katoh, R. Analysis of the excited states of regioregular polythiophene P3HT. Energy Environ. Sci. 2008, 1, 294–299. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awsiuk, K.; Dąbczyński, P.; Marzec, M.M.; Rysz, J.; Moons, E.; Budkowski, A. Electrically Switchable Film Structure of Conjugated Polymer Composites. Materials 2022, 15, 2219. https://doi.org/10.3390/ma15062219
Awsiuk K, Dąbczyński P, Marzec MM, Rysz J, Moons E, Budkowski A. Electrically Switchable Film Structure of Conjugated Polymer Composites. Materials. 2022; 15(6):2219. https://doi.org/10.3390/ma15062219
Chicago/Turabian StyleAwsiuk, Kamil, Paweł Dąbczyński, Mateusz M. Marzec, Jakub Rysz, Ellen Moons, and Andrzej Budkowski. 2022. "Electrically Switchable Film Structure of Conjugated Polymer Composites" Materials 15, no. 6: 2219. https://doi.org/10.3390/ma15062219
APA StyleAwsiuk, K., Dąbczyński, P., Marzec, M. M., Rysz, J., Moons, E., & Budkowski, A. (2022). Electrically Switchable Film Structure of Conjugated Polymer Composites. Materials, 15(6), 2219. https://doi.org/10.3390/ma15062219