Composition of Corroded Reinforcing Steel Surface in Solutions Simulating the Electrolytic Environments in the Micropores of Concrete in the Propagation Period
Abstract
:1. Introduction
2. Experimental
2.1. Corrosion Rate Measurements
2.2. Raman Spectroscopy Measurements
2.3. Measurements Made through X-ray Photoelectron Spectroscopy (XPS)
3. Results
3.1. Corrosion Rate Tests
3.2. Raman Spectroscopy Analyses
3.3. X-ray Photoelectronic Spectroscopy (XPS) Analyses
4. Discussion
5. Conclusions
- The corrosion rate of the steel was negligible in the solution of Ca(OH)2. However, the corrosion rate was progressively higher when increasing concentrations of FeCl2, while the solution of 0.5 M in NaCl presented values similar to the most diluted FeCl2 solution.
- The results obtained with Raman spectroscopy and XPS concerning the characterization of the progressive development of surface corrosion products during the period of propagation were mutually coherent. They showed that several types of iron oxides, dependent on the pH values, were detected.
- According to the techniques implemented in this research, which was focused on the evolution of the corrosion products of iron in a corrosion pit, it was confirmed that the higher the corrosion (i.e., the higher the amount of developed oxides), the higher the oxidation and hydroxylation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Page, C.L.; Treadaway, K.W.J. Aspects of the electrochemistry of steel in concrete. Nature 1982, 297, 109–115. [Google Scholar] [CrossRef]
- Kaesche, H. Mechanism of pitting corrosion. Corros. Trait. 1969, 17, 389–396. [Google Scholar]
- Gjorv, O.E.; Vennesland, O. Diffusion of chloride-ions from seawater into concrete. Cem. Concr. Res. 1979, 9, 229–238. [Google Scholar] [CrossRef]
- Sun, L.; Li, C.; Zhang, C.; Su, Z.; Chen, C. Early Monitoring of Rebar Corrosion Evolution Based on FBG Sensor. Int. J. Struct. Stab. Dyn. 2018, 18, 1840001–1842018. [Google Scholar] [CrossRef]
- Hoar, T.P. Production and breakdown of passivity of metals. Corros. Sci. 1967, 7, 341–355. [Google Scholar] [CrossRef]
- Janik-Czachor, M.; Szummer, A.; Szlarska-Smialowska, Z. Electron-microprobe investigation of processes leading to nucleation of pits on iron. Corros. Sci. 1975, 15, 775–778. [Google Scholar] [CrossRef]
- Alvarez, M.G.; Galvele, J.R. The mechanism of pitting of high-purity iron in NaCl solutions. Corros. Sci. 1984, 24, 27–48. [Google Scholar] [CrossRef]
- Andrade, C.; Page, C.L. Pore solution chemistry and corrosion in hydrated cement systems containing chloride salts. A study of cation specific effects. Br. Corros. J. 1986, 21, 49–53. [Google Scholar] [CrossRef]
- Pourbaix, M. Some applications of potential-pH diagrams to study of localized corrosion. J. Electrochem. Soc. 1976, 123, C25–C36. [Google Scholar] [CrossRef]
- Garcés, P.; Andrade, M.; Saez, A.; Alonso, M. Corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments in the micropores of concrete in the propagation period. Corros. Sci. 2005, 47, 289–306. [Google Scholar] [CrossRef]
- Singh, J.K.; Singh, D.D.N. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH. Corros. Sci. 2012, 56, 129–142. [Google Scholar] [CrossRef]
- Shi, J.J.; Ming, J.; Wu, M. Electrochemical behavior and corrosion products of Cr-modified reinforcing steels in saturated Ca(OH)2 solution with chlorides. Cem. Concr. Compos. 2020, 110, 103587. [Google Scholar] [CrossRef]
- Thibeau, R.J.; Brown, C.W.; Heidersbach, R.H. Raman spectra of possible corrosion products of iron. Appl. Spectrosc. 1978, 32, 532–535. [Google Scholar] [CrossRef]
- Boucherit, N.; Hugot, A.; Joiret, S. Raman studies of corrosion films grown on Fe and Fe-6Mo in pitting conditions. Corros. Sci. 1991, 32, 497–507. [Google Scholar] [CrossRef]
- Thierry, D.; Persson, D.; Leygraf, C.; Boucherit, N.; Goff, A.H.-L. Raman spectroscopy and XPS investigations of anodic corrosion films formed Fe-Mo alloys in alkaline solutions. Corros. Sci. 1991, 32, 273–284. [Google Scholar] [CrossRef]
- Moulder, J.E.; Hammond, J.S.; Smith, K.L. Using angle resolved ESCA to characterize winchester disks. Appl. Surf. Sci. 1986, 25, 446–454. [Google Scholar] [CrossRef]
- Garcés, P.; Saura, P.; Méndez, A.; Zornoza, E.; Andrade, C. Effect of nitrite in corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments of micropores of concrete in the propagation period. Corros. Sci. 2008, 50, 498–509. [Google Scholar] [CrossRef]
- Garcés, P.; Saura, P.; Zornoza, E.; Andrade, C. Inhibiting behaviour of nitrites in corrosion of reinforcing steel in basic solutions simulating the electrolityc enviroments of micropores in the initiation period. In Proceedings of the 6th International Conference on Concrete under Severe Conditions, Environment and Loading (CONSEC ’10), Mérida, México, 7–9 June 2010; pp. 1247–1254. [Google Scholar]
- Saura, P.; Zornoza, E.; Andrade, C.; Garcés, P. Steel corrosion inhibiting effect of sodium nitrate in simulated concrete pore solutions. Corrosion 2011, 67, 7. [Google Scholar] [CrossRef]
- Keddam, M.; Mattos, O.R.; Takenouti, H. Reaction model for iron dissolution studied by electrode impedance. 1. Experimental results and reaction model. J. Electrochem. Soc. 1981, 128, 257–266. [Google Scholar] [CrossRef]
- Stern, M.; Roth, R.M. Anodic behaviour of iron in acid solution. J. Electrochem. Soc. 1957, 104, 390–392. [Google Scholar] [CrossRef]
- Barnartt, S. Tafel slopes for iron corrosion in acidic solutions. Corrosion 1971, 27, 467–470. [Google Scholar] [CrossRef]
- Andrade, C.; Gonzalez, J.A. Techniques electrochimiques qualitatives et quantitatives pour mésurer les effects des additions sur la corrosion des armatures. Silic. Ind. 1982, 47, 289–295. [Google Scholar]
- Stern, M.; Geary, A.L. A theorical analysis of the shape of polarization curves. J. Elect. Soc. 1957, 104, 56. [Google Scholar] [CrossRef]
- Faria, D.L.A.; Venancio-Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Nauer, G.; Strecha, P.; Liptay, G. Spectroscopy and thermoanalytical characterization of standard for the identification of reaction products on iron electrodes. J. Therm. Anal. 1985, 30, 813–830. [Google Scholar] [CrossRef]
- Brion, D. Study by photoelectron-spectroscopy of surface degradation of fes2, cufes2 zns and pbs exposed to air and water. Appl. Surf. Sci. 1980, 5, 133–152. [Google Scholar] [CrossRef]
- Briggs, D.; Seah, M.P. Practical surface analysis, 2nd ed.; John Willey & Sons: Hoboken, NJ, USA, 1993; Volume 1. [Google Scholar]
- Barr, L. ESCA study of termination of passivation of elemental metals. J. Phys. Chem. 1978, 82, 1801–1810. [Google Scholar] [CrossRef]
- Keller, P.; Strehblow, H.-H. XPS investigations of electrochemically formed passive layers on Fe/Cr-alloys in 0.5 M H2SO4. Corros. Sci. 2004, 46, 1939–1952. [Google Scholar] [CrossRef]
- Betancur, J.D.; Barrero, C.A.; Greneche, J.M.; Goya, G.F. The effect of water content on the magnetic and structural properties of goethite. J. Alloys Compd. 2004, 369, 247–251. [Google Scholar] [CrossRef]
- Nieuwoudt, M.K.; Comins, J.D.; Cukrowski, I. The growth of the passive film on iron in 0.05 M NaOH studied in situ by Raman microspectroscopy and electrochemical polarization. Part II: In situ Raman spectra of the passive film surface during growth by electrochemical polarization. J. Raman Spectrosc. 2011, 42, 1353–1365. [Google Scholar] [CrossRef]
- Kolev, D.A.; Hu, J.; Fraaij, A.L.A.; Stroeven, P.; Boshkov, N.; de Wit, J.H.W. Quantitative characterization of steel/cement paste interface microstructure and corrosion phenomena in mortars suffering from chloride attack. Corros. Sci. 2006, 48, 4001–4019. [Google Scholar] [CrossRef]
- Freire, L.; Nóvoa, X.R.; Montemor, M.F.; Carmezim, M.J. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials. Mater. Chem. Phys. 2009, 114, 962–972. [Google Scholar] [CrossRef]
- Refait, P.H.; Abdelmoula, M.; Genin, J.M.R. Mechanisms of formation and structure of greenrust one in aqueous corrosion of iron in the presence of chloride ions. Corros. Sci. 1998, 39, 1547–1560. [Google Scholar] [CrossRef]
- Refait, P.; Genin, J.-M.R. The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite. Corros. Sci. 1997, 39, 539–553. [Google Scholar] [CrossRef]
- Remazeilles, C.; Refait, P.H. On the formation of β-FeOOH (akaganeite) in chloride-containing environments. Corros. Sci. 2007, 49, 844–857. [Google Scholar] [CrossRef]
- McIntyre, N.S.; Zetaruk, D.G. X-ray photoelectron spectroscopic studies of iron-oxides. Anal. Chem. 1977, 49, 1521–1529. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
% C = 0.30 | % Si = 0.33 | % Mn = 0.44 | % S = 0.05 |
% P = 0.02 | % Cr < 0.01 | % Ni < 0.01 | % Mo < 0.01 |
Solution | pH | Conductivity (mS/cm) |
---|---|---|
Ca(OH)2 sat. | 12.41 | 7.96 |
NaCl 0.5 M | 6.55 | 45.5 |
FeCl2 0.02 M | 3.49 | 4.75 |
FeCl2 0.2 M | 2.65 | 31.9 |
FeCl2 2 M | 1.06 | 136.8 |
Binding Energy (eV) | FeCl2 0.02 M | FeCl2 0.2 M | FeCl2 2 M | NaCl 0.5 M | Ca(OH)2 Sat. |
---|---|---|---|---|---|
529.9 ± 0.1 | 48.5 | 36.6 | 24.9 | 19.9 | 29.0 |
531.2 ± 0.5 | 37.7 | 38.4 | 42.8 | 52.0 | 45.5 |
533.0 ± 0.5 | 13.8 (*) | 25.0 | 32.3 | 28.1 | 25.5 |
Binding Energy (eV) | FeCl2 0.02 M | FeCl2 0.2 M | FeCl2 2 M | NaCl 0.5 M | Ca(OH)2 (Sat.) |
---|---|---|---|---|---|
708.8 ± 0.1 | 7.1 | 11.2 | 12.7 | 7.6 | 21.2 |
710.2 ± 0.1 | 44.5 | 29.9 | 19.3 | 23.6 | 38.5 |
711.8 ± 0.1 | 25.2 | 22.9 | 33.4 | 41.8 | 20.2 |
713.1 ± 0.1 | 19.4 | 22.0 | 23.2 | 21.8 | 8.1 |
715.2 ± 0.1 | 3.8 | 13.9 | 11.4 | 5.2 | 12.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saura, P.; Zornoza, E.; Andrade, C.; Ferrandiz-Mas, V.; Garcés, P. Composition of Corroded Reinforcing Steel Surface in Solutions Simulating the Electrolytic Environments in the Micropores of Concrete in the Propagation Period. Materials 2022, 15, 2216. https://doi.org/10.3390/ma15062216
Saura P, Zornoza E, Andrade C, Ferrandiz-Mas V, Garcés P. Composition of Corroded Reinforcing Steel Surface in Solutions Simulating the Electrolytic Environments in the Micropores of Concrete in the Propagation Period. Materials. 2022; 15(6):2216. https://doi.org/10.3390/ma15062216
Chicago/Turabian StyleSaura, Pascual, Emilio Zornoza, Carmen Andrade, Verónica Ferrandiz-Mas, and Pedro Garcés. 2022. "Composition of Corroded Reinforcing Steel Surface in Solutions Simulating the Electrolytic Environments in the Micropores of Concrete in the Propagation Period" Materials 15, no. 6: 2216. https://doi.org/10.3390/ma15062216
APA StyleSaura, P., Zornoza, E., Andrade, C., Ferrandiz-Mas, V., & Garcés, P. (2022). Composition of Corroded Reinforcing Steel Surface in Solutions Simulating the Electrolytic Environments in the Micropores of Concrete in the Propagation Period. Materials, 15(6), 2216. https://doi.org/10.3390/ma15062216