Structure of Randomly Distributed Nanochain Aggregates on Silicon Substrates: Modeling and Optical Absorption Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Nanoaggregate Structures
2.2. Model of Nanochain Aggregates
2.2.1. Basic Structural Unit of Model
2.2.2. Spatial Distribution of Nanochains
2.2.3. Aggregation Model of Clusters
2.2.4. Finite-Difference Time-Domain (FDTD) Method
3. Results and Discussion
3.1. Optical Absorption Properties of Model
3.1.1. Relationship between Filling Factor and Optical Absorption
3.1.2. Relationship between Thickness and Optical Absorption
3.1.3. Relationship between Equivalent Density and Optical Absorption
3.1.4. Relationship between Equivalent Thermal Conductivity and Optical Absorption
3.1.5. Relationship between Equivalent Volumetric Heat Capacity and Optical Absorption
3.2. Model Validation
3.2.1. Sample Characterization
3.2.2. Analysis of Calculation and Experimental Results
3.3. Discussion
4. Conclusions
- (1)
- The visible-range absorptivity of the structure was quadratically related to the filling factor. The filling factor affects the motion path of incident photons and, thus, the efficiency of capturing photons. An extremely sparse or dense distribution of nanochains leads to a reduction in the model absorptivity.
- (2)
- The visible-range absorptivity of the modeled structure is exponentially related to its thickness. The critical thickness of the Gaussian model is much smaller than those of the uniform and Cauchy models because of the higher photon-capturing efficiency of the former. The maximum visible-range absorptivities of the three models are similar, indicating that the aggregate form of the nanochains has a negligible effect on the surface reflection of the model.
- (3)
- The visible-range absorptivity of the modeled structure is quadratically related to its equivalent density. The Al nanochain aggregate structure is more suitable as an optical absorber that exhibits a low density and high visible-range absorption.
- (4)
- The visible-range absorptivity of the modeled structure is also related to its equivalent thermal conductivity. The Au nanochain aggregate structure allows for efficient optical absorption and fast heat dissipation. Meanwhile, the Cr nanoaggregate structure allows for efficient energy capture and accumulation.
- (5)
- Finally, the visible-range absorptivity of the modeled structure is quadratically related to its equivalent volumetric heat capacity. The Al nanoaggregate structure is more suitable as an optical absorber with a low volumetric heat capacity and high-sensitivity time-domain temperature response.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- More-Chevalier, J.; Yudin, P.V.; Cibert, C.; Bednyakov, P.; Lančok, J. Black aluminum-coated Pt/Pb (Zr0.56Ti0.44) O3/Pt thin film structures for pyroelectric energy harvesting from a light source. J. Appl. Phys. 2019, 126, 214501. [Google Scholar] [CrossRef]
- Li, N.; Yang, D.J.; Shao, Y.; Liu, Y.; Tang, J.; Yang, L.; Sun, T.; Zhou, W.; Liu, H.; Xue, G. Nanostructured Black Aluminum Prepared by Laser Direct Writing as a High-Performance Plasmonic Absorber for Photothermal/ Electric Conversion. ACS Appl. Mater. Interfaces 2021, 13, 4305–4315. [Google Scholar] [CrossRef]
- Kwon, N.; Oh, H.; Kim, R.; Sinha, A.; Kim, J.; Shin, J.; Chon, J.W.M.; Lim, B. Direct Chemical Synthesis of Plasmonic Black Colloidal Gold Superparticles with Broadband Absorption Properties. Nano. Lett. 2018, 18, 5927–5932. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, E.; Priestley, K.J.; Dunn, B.; Cageao, R.; Barki, A.; Osmundsen, J.; Turczynski, C.; Abedin, N. Radiation budget instrument (RBI) for JPSS-2. In Proceedings of the Conference on Characterization and Radiometric Calibration for Remote Sensing, Logan, UT, USA, 24 August 2015. [Google Scholar]
- Xu, C.; Liu, D.; Zhou, L.; Shi, Q.; Gao, Y.; Wang, X.; Li, Z. Thermodynamics characteristics of MEMS infrared thin film. Opt. Express. 2019, 27, 32779–32788. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, D.F.; Li, Z.; Yang, S.H.; Zhang, J.Y.; Zhao, Q. Performance improvement of an infrared scene generation chip by in-plane microstructures. Opt. Express. 2020, 28, 26807–26822. [Google Scholar] [CrossRef] [PubMed]
- Arinze, E.; Qiu, B.; Nyirjesy, G.; Thon, S.M. Plasmonic Nanoparticle Enhancement of Solution-Processed Solar Cells: Practical Limits and Opportunities. ACS. Photonics 2016, 3, 158–173. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, D.; Liu, Y.; Wu, D.; Chen, L.; Ma, R.; Yu, Z.; Yu, L.; Ye, H. Numerical Study of an Efficient Solar Absorber Consisting of Metal Nanoparticles. Nanoscale. Res. Lett. 2017, 12, 601. [Google Scholar] [CrossRef] [Green Version]
- Mascaretti, L.; Schirato, A.; Fornasiero, P.; Boltasseva, A.; Shalaev, V.M.; Alabastri, A.; Naldoni, A. Challenges and prospects of plasmonic metasurfaces for photothermal catalysis. Nanophotonics 2022, 11, 3035–3056. [Google Scholar] [CrossRef]
- Giorgianni, F.; Vicario, C.; Shalaby, M.; Tenuzzo, L.D.; Marcelli, A.; Zhang, T.; Zhao, K.; Chen, Y.; Hauri, C.; Lupi, S. High-Efficiency and Low Distortion Photoacoustic Effect in 3D Graphene Sponge. Adv. Funct. Mater. 2017, 28, 1702652. [Google Scholar] [CrossRef] [Green Version]
- Morales-Luna, G.; Morales-Luna, M. Effective medium theory to the description of plasmonic resonances: Role of Au and Ti nanoparticles embedded in MoO3 thin films. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.; Odriozola, G.; Moncho-Jordá, A.; Callejas-Fernández, J.; Martínez-García, R.; Hidalgo-Álvarez, R. Multiple contact kernel for diffusionlike aggregation. Phys. Rev. E 2000, 62, 8335–8343. [Google Scholar] [CrossRef] [Green Version]
- Munir, N.B.; Mahan, J.R.; Priestley, K.J. First-principle model for the directional spectral absorptivity of gold-black in the near infrared. J. Opt. Soc. Am. A 2019, 36, 1675–1689. [Google Scholar] [CrossRef] [PubMed]
- Witten, J.T.A.; Sander, L.M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Phys. Rev. Lett. 1981, 47, 1400–1403. [Google Scholar] [CrossRef]
- Jensen, P.; Barabási, A.L.; Larralde, H.; Havlin, S.; Stanley, H.E. Connectivity of diffusing particles continually deposited on a surface: Relation to LECBD experiments. Physica A 1994, 207, 219–277. [Google Scholar] [CrossRef]
- Jensen, P.; Barabási, A.L.; Larralde, H.; Havlin, S.; Stanley, H.E. Controlling nanostructures. Nature 1994, 368, 22. [Google Scholar] [CrossRef]
- Atteia, F.; Rouzo, J.; Denaix, L.; Duché, D.; Berginc, G.; Simon, J.J.; Escoubas, L. Morphologies and optical properties of black silicon by room temperature reactive ion etching. Mater. Res. Bull. 2020, 131, 110973. [Google Scholar] [CrossRef]
- Chen, C.; Youngblood, N.; Peng, R.; Yoo, D.; Mohr, A.D.; Johnson, W.T.; Oh, S.H.; Li, M. Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics. Nano. Lett. 2017, 17, 985–991. [Google Scholar] [CrossRef]
- Ryu, Y.; Kim, C.; Ahn, J.; Urbas, A.M.; Park, W.; Kim, K. Material-Versatile Ultrabroadband Light Absorber with Self-Aggregated Multiscale Funnel Structures. ACS. Appl. Mater. Interfaces 2018, 10, 29884–29892. [Google Scholar] [CrossRef]
- Deng, G.; Dereshgi, S.A.; Song, X.; Aydin, K. Polarization dependent, plasmon-enhanced infrared transmission through gold nanoslits on monolayer black phosphorus. J. Opt. Soc. Am. B. Opt. Phys 2019, 36, F109–F116. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Boomsma, K.; Poulikakos, D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int. J. Heat. Mass. Transf. 2001, 44, 827–836. [Google Scholar] [CrossRef]
- Xin, G.Z.; Chen, D.Q.; Cai, Y.; Huang, Y.; Wang, L.; Bai, T.Z.; Wang, L.X. Direct observation of widely tunable mid-infrared emission of graphene foam induced by modulated laser diode light. Carbon 2021, 179, 486–492. [Google Scholar] [CrossRef]
Parameter | Type of Relationship Curve | Material of the Models | Extreme Values for Gaussian, Uniform and Cauchy Models |
---|---|---|---|
Filling factor (%) | Quadratic | Al | γG = 5.4, γU = 4.4, γC = 4.6 |
Au | γG = 7.4, γU = 5.0, γC = 5.6 | ||
Cr | γG = 6.0, γU = 4.4, γC = 5.2 | ||
Thickness (μm) | Exponential | Al | dG = 21, dU = 29, dC = 36 |
Au | dG = 47, dU = 49, dC = 59 | ||
Cr | dG = 37, dU = 42, dC = 43 | ||
Density (×103 kg m−3) | Quadratic | Al | ρG = 0.146, ρU = 0.113, ρC = 0.124 |
Au | ρG = 1.430, ρU = 0.996, ρC = 1.121 | ||
Cr | ρG = 0.431, ρU = 0.316, ρC = 0.374 | ||
Thermal conductivity (W m−1 K−1)) | Cubic | Al | kG = 33.86, kU = 28.64, kC = 30.43 |
Au | kG = 55.87, kU = 43.02, kC = 47.50 | ||
Cr | kG = 14.36, kU = 11.68, kC = 13.05 | ||
Volumetric heat capacity (×103 J m−3 K−1) | Quadratic | Al | sG = 128.3, sU = 99.79, sC = 109.3 |
Au | sG = 183.15, sU = 123.75, sC = 143.55 | ||
Cr | sG = 194.13, sU = 123.75, sC = 143.55 |
Number | 1# | 2# | 3# | 4# | 5# | 6# |
---|---|---|---|---|---|---|
Thickness of the absorbed layer (μm) | 4.78 | 7.34 | 8.37 | 4.83 | 5.07 | 5.56 |
Filling factor (%) | 6.1 | 5.1 | 4.1 | 5.9 | 6.3 | 6.8 |
Substrate thickness and material | 500 μm Si | 300 nm PI + 500 μm Si |
Object | RMSE between Measured and Fitted Curves |
---|---|
Si | 0.0044 |
1# | 0.0008 |
2# | 0.0001 |
3# | 0.0007 |
PI | 0.0071 |
4# | 0.0002 |
5# | 0.0007 |
6# | 0.0001 |
Object | Spearman Correlation Coefficient of Spectral Absorption Curves | Relative Error of Visible Absorptivity |
---|---|---|
1# | 0.976 | 0.0018 |
2# | 0.954 | 0.0031 |
3# | 0.962 | 0.0017 |
4# | 0.846 | 0.0028 |
5# | 0.822 | 0.0013 |
6# | 0.996 | 0.0029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Gao, Y.; Shi, R.; Li, Z.; Shi, Q. Structure of Randomly Distributed Nanochain Aggregates on Silicon Substrates: Modeling and Optical Absorption Characteristics. Materials 2022, 15, 4778. https://doi.org/10.3390/ma15144778
Zhao T, Gao Y, Shi R, Li Z, Shi Q. Structure of Randomly Distributed Nanochain Aggregates on Silicon Substrates: Modeling and Optical Absorption Characteristics. Materials. 2022; 15(14):4778. https://doi.org/10.3390/ma15144778
Chicago/Turabian StyleZhao, Tianze, Yanze Gao, Rui Shi, Zhuo Li, and Qingfeng Shi. 2022. "Structure of Randomly Distributed Nanochain Aggregates on Silicon Substrates: Modeling and Optical Absorption Characteristics" Materials 15, no. 14: 4778. https://doi.org/10.3390/ma15144778
APA StyleZhao, T., Gao, Y., Shi, R., Li, Z., & Shi, Q. (2022). Structure of Randomly Distributed Nanochain Aggregates on Silicon Substrates: Modeling and Optical Absorption Characteristics. Materials, 15(14), 4778. https://doi.org/10.3390/ma15144778