Influence of Xenogeneic and Alloplastic Carriers for Bone Augmentation on Human Unrestricted Somatic Stem Cells
Abstract
:1. Introduction
2. Results
2.1. Proliferation
2.2. Cytotoxicity
2.3. SEM-Evaluation
2.4. Micro-CT Images
3. Discussion
4. Materials and Methods
4.1. Set Up
- BO: BioOss® Collagen (n = 24, n = 8 in each assay): Deproteinized bovine bone mineral granules (90%), and bovine collagen (10%), Geistlich Biomaterials, Wolhusen, Switzerland
- NB: NanoBone® Block (n = 24, n = 8 in each assay): composite material made from nanocrystalline hydroxyapatite (61%) and silica gel SiO2 (39%), ARTROSS GmbH, Rostock, Germany.
4.2. Preparation of Carriers
4.3. Cell Cultivation
4.4. Proliferation
4.5. Cytotoxicity
4.6. SEM and Micro-CT Imaging
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inchingolo, F.; Hazballa, D.; Inchingolo, A.D.; Malcangi, G.; Marinelli, G.; Mancini, A.; Maggiore, M.E.; Bordea, I.R.; Scarano, A.; Farronato, M.; et al. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. Materials 2022, 15, 1120. [Google Scholar] [CrossRef] [PubMed]
- Horas, U.; Pelinkovic, D.; Herr, G.; Aigner, T.; Schnettler, R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J. Bone Jt. Surg. Am. Vol. 2003, 85, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Nkenke, E.; Neukam, F.W. Autogenous bone harvesting and grafting in advanced jaw resorption: Morbidity, resorption and implant survival. Eur. J. Oral Implantol. 2014, 7 (Suppl. S2), 203–217. [Google Scholar]
- Smeets, R.; Hanken, H.; Beck-Broichsitter, B.; Gröbe, A.; Precht, C.; Heilnad, M.; Jung, O. Knochenersatzmaterialien. MKG Chirurg. 2016, 9, 2–11. [Google Scholar] [CrossRef]
- Schorn, L.; Fienitz, T.; De Donno, F.; Sterner-Kock, A.; Maul, A.C.; Holtmann, H.; Lommen, J.; Rothamel, D. Critical-size Defect Augmentation Using Sintered and Non-Sintered Bovine Bone Matrix—An Experimental Controlled Study in Minipigs. J. Oral Maxillofac. Surg. 2021, 79, 1866–1873. [Google Scholar] [CrossRef] [PubMed]
- Schorn, L.; Sproll, C.; Ommerborn, M.; Naujoks, C.; Kubler, N.R.; Depprich, R. Vertical bone regeneration using rhBMP-2 and VEGF. Head Face Med. 2017, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Lommen, J.; Schorn, L.; Landers, A.; Holtmann, H.; Berr, K.; Kubler, N.R.; Sproll, C.; Rana, M.; Depprich, R. Release kinetics of the model protein FITC-BSA from different polymer-coated bovine bone substitutes. Head Face Med. 2019, 15, 27. [Google Scholar] [CrossRef]
- Biomaterials, G. Geistlich Bio-Oss® Collagen. Available online: https://www.geistlich.de/de/dental/knochenersatz/bio-oss-collagen/produktlinie/ (accessed on 19 June 2022).
- Dai, Y.; Xu, J.; Han, X.H.; Cui, F.Z.; Zhang, D.S.; Huang, S.Y. Clinical efficacy of mineralized collagen (MC) versus anorganic bovine bone (Bio-Oss) for immediate implant placement in esthetic area: A single-center retrospective study. BMC Oral Health 2021, 21, 390. [Google Scholar] [CrossRef]
- Fienitz, T.; Moses, O.; Klemm, C.; Happe, A.; Ferrari, D.; Kreppel, M.; Ormianer, Z.; Gal, M.; Rothamel, D. Histological and radiological evaluation of sintered and non-sintered deproteinized bovine bone substitute materials in sinus augmentation procedures. A prospective, randomized-controlled, clinical multicenter study. Clin. Oral Investig. 2017, 21, 787–794. [Google Scholar] [CrossRef]
- Sanchez-Labrador, L.; Molinero-Mourelle, P.; Perez-Gonzalez, F.; Saez-Alcaide, L.M.; Brinkmann, J.C.; Martinez, J.L.; Martinez-Gonzalez, J.M. Clinical performance of alveolar ridge augmentation with xenogeneic bone block grafts versus autogenous bone block grafts. A systematic review. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 293–302. [Google Scholar] [CrossRef]
- Smeets, R.; Matthies, L.; Windisch, P.; Gosau, M.; Jung, R.; Brodala, N.; Stefanini, M.; Kleinheinz, J.; Payer, M.; Henningsen, A.; et al. Horizontal augmentation techniques in the mandible: A systematic review. Int. J. Implant. Dent. 2022, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Bracey, D.N.; Cignetti, N.E.; Jinnah, A.H.; Stone, A.V.; Gyr, B.M.; Whitlock, P.W.; Scott, A.T. Bone xenotransplantation: A review of the history, orthopedic clinical literature, and a single-center case series. Xenotransplantation 2020, 27, e12600. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, J.H.; Shim, J.H.; Hwang, N.S.; Heo, C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef] [Green Version]
- Bordea, I.R.; Candrea, S.; Alexescu, G.T.; Bran, S.; Baciut, M.; Baciut, G.; Lucaciu, O.; Dinu, C.M.; Todea, D.A. Nano-hydroxyapatite use in dentistry: A systematic review. Drug Metab. Rev. 2020, 52, 319–332. [Google Scholar] [CrossRef]
- Bruder, S.P.; Fox, B.S. Tissue engineering of bone. Cell based strategies. Clin. Orthop. Relat. Res. 1999, 367, S68–S83. [Google Scholar] [CrossRef]
- Kogler, G.; Sensken, S.; Airey, J.A.; Trapp, T.; Muschen, M.; Feldhahn, N.; Liedtke, S.; Sorg, R.V.; Fischer, J.; Rosenbaum, C.; et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J. Exp. Med. 2004, 200, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaehres, H.; Kogler, G.; Arauzo-Bravo, M.J.; Bleidissel, M.; Santourlidis, S.; Weinhold, S.; Greber, B.; Kim, J.B.; Buchheiser, A.; Liedtke, S.; et al. Induction of pluripotency in human cord blood unrestricted somatic stem cells. Exp. Hematol. 2010, 38, 809–818.e2. [Google Scholar] [CrossRef]
- Liedtke, S.; Buchheiser, A.; Bosch, J.; Bosse, F.; Kruse, F.; Zhao, X.; Santourlidis, S.; Kogler, G. The HOX Code as a "biological fingerprint" to distinguish functionally distinct stem cell populations derived from cord blood. Stem. Cell Res. 2010, 5, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Schira, J.; Falkenberg, H.; Hendricks, M.; Waldera-Lupa, D.M.; Kogler, G.; Meyer, H.E.; Muller, H.W.; Stuhler, K. Characterization of Regenerative Phenotype of Unrestricted Somatic Stem Cells (USSC) from Human Umbilical Cord Blood (hUCB) by Functional Secretome Analysis. Mol. Cell Proteom. 2015, 14, 2630–2643. [Google Scholar] [CrossRef] [Green Version]
- Schira-Heinen, J.; Czapla, A.; Hendricks, M.; Kloetgen, A.; Wruck, W.; Adjaye, J.; Kogler, G.; Werner Muller, H.; Stuhler, K.; Trompeter, H.I. Functional omics analyses reveal only minor effects of microRNAs on human somatic stem cell differentiation. Sci. Rep. 2020, 10, 3284. [Google Scholar] [CrossRef]
- Naujoks, C.; Langenbach, F.; Berr, K.; Depprich, R.; Kubler, N.; Meyer, U.; Handschel, J.; Kogler, G. Biocompatibility of osteogenic predifferentiated human cord blood stem cells with biomaterials and the influence of the biomaterial on the process of differentiation. J. Biomater. Appl. 2011, 25, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001, 10 (Suppl. S2), S96–S101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schorn, L.; Handschel, J.; Lommen, J.; FP, V.O.N.B.; Depprich, R.; Kubler, N.; Holtmann, H. Evaluation of Biocompatibility of Different Membrane Surfaces Using Unrestricted Somatic Stem Cells. In Vivo 2019, 33, 1447–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samavedi, S.; Whittington, A.R.; Goldstein, A.S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013, 9, 8037–8045. [Google Scholar] [CrossRef] [PubMed]
- Bighetti, A.C.C.; Cestari, T.M.; Santos, P.S.; Arantes, R.V.N.; Paini, S.; Assis, G.F.; Costa, B.C.; de Oliveira, F.A.; Tokuhara, C.K.; de Oliveira, R.C.; et al. In vitro and in vivo assessment of CaP materials for bone regenerative therapy. The role of multinucleated giant cells/osteoclasts in bone regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 282–297. [Google Scholar] [CrossRef]
- Meyer, U.; Joos, U.; Wiesmann, H.P. Biological and biophysical principles in extracorporal bone tissue engineering. Part III. Int. J. Oral Maxillofac. Surg. 2004, 33, 635–641. [Google Scholar] [CrossRef]
- Trajkovski, B.; Jaunich, M.; Muller, W.D.; Beuer, F.; Zafiropoulos, G.G.; Houshmand, A. Hydrophilicity, Viscoelastic, and Physicochemical Properties Variations in Dental Bone Grafting Substitutes. Materials 2018, 11, 215. [Google Scholar] [CrossRef] [Green Version]
- Degidi, M.; Artese, L.; Rubini, C.; Perrotti, V.; Iezzi, G.; Piattelli, A. Microvessel density and vascular endothelial growth factor expression in sinus augmentation using Bio-Oss. Oral Dis 2006, 12, 469–475. [Google Scholar] [CrossRef]
- Schorn, L.; Fienitz, T.; Gerstenberg, M.F.; Sterner-Kock, A.; Maul, A.C.; Lommen, J.; Holtmann, H.; Rothamel, D. Influence of different carrier materials on biphasic calcium phosphate induced bone regeneration. Clin. Oral Investig. 2021, 25, 3729–3737. [Google Scholar] [CrossRef]
- Petrovic, L.; Schlegel, A.K.; Schultze-Mosgau, S.; Wiltfang, J. Different substitute biomaterials as potential scaffolds in tissue engineering. Int. J. Oral Maxillofac. Implant. 2006, 21, 225–231. [Google Scholar]
- Jung, R.E.; Philipp, A.; Annen, B.M.; Signorelli, L.; Thoma, D.S.; Hammerle, C.H.; Attin, T.; Schmidlin, P. Radiographic evaluation of different techniques for ridge preservation after tooth extraction: A randomized controlled clinical trial. J. Clin. Periodontol. 2013, 40, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Zeng, H.; Fan, W.; Wu, T.; Sun, J.; Yan, Q.; Shi, B. Ridge preservation of a novel extraction socket applying Bio-Oss(R) collagen: An experimental study in dogs. J. Dent. Sci. 2021, 16, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Gotz, W.; Gerber, T.; Michel, B.; Lossdorfer, S.; Henkel, K.O.; Heinemann, F. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: A study on biopsies from human jaws. Clin. Oral Implant. Res. 2008, 19, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Heino, J. The collagen family members as cell adhesion proteins. Bioessays 2007, 29, 1001–1010. [Google Scholar] [CrossRef]
- Tsai, K.S.; Kao, S.Y.; Wang, C.Y.; Wang, Y.J.; Wang, J.P.; Hung, S.C. Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. J. Biomed. Mater. Res. A 2010, 94, 673–682. [Google Scholar] [CrossRef]
- Lorenz, J.; Korzinskas, T.; Chia, P.; Maawi, S.A.; Eichler, K.; Sader, R.A.; Ghanaati, S. Do Clinical and Radiological Assessments Contribute to the Understanding of Biomaterials? Results From a Prospective Randomized Sinus Augmentation Split-Mouth Trial. J. Oral Implantol. 2018, 44, 62–69. [Google Scholar] [CrossRef]
- Wintermantel, E.; Mayer, J.; Ruffieux, K.; Bruinink, A.; Eckert, K.L. Biomaterials, human tolerance and integration. Biomater. Chir. 1999, 70, 847–857. [Google Scholar] [CrossRef]
- Chang, B.S.; Lee, C.K.; Hong, K.S.; Youn, H.J.; Ryu, H.S.; Chung, S.S.; Park, K.W. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials 2000, 21, 1291–1298. [Google Scholar] [CrossRef]
- Mastrogiacomo, M.; Scaglione, S.; Martinetti, R.; Dolcini, L.; Beltrame, F.; Cancedda, R.; Quarto, R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 2006, 27, 3230–3237. [Google Scholar] [CrossRef]
- Eweida, A.; Schulte, M.; Frisch, O.; Kneser, U.; Harhaus, L. The impact of various scaffold components on vascularized bone constructs. J. Craniomaxillofac. Surg. 2017, 45, 881–890. [Google Scholar] [CrossRef]
- Handschel, J.; Berr, K.; Depprich, R.; Naujoks, C.; Kubler, N.R.; Meyer, U.; Ommerborn, M.; Lammers, L. Compatibility of embryonic stem cells with biomaterials. J. Biomater. Appl. 2009, 23, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Douglas, T.; Zamponi, C.; Becker, S.T.; Sherry, E.; Sivananthan, S.; Warnke, F.; Wiltfang, J.; Warnke, P.H. Comparison of in vitro biocompatibility of NanoBone((R)) and BioOss((R)) for human osteoblasts. Clin. Oral Implant. Res. 2011, 22, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Pandya, M.; Saxon, M.; Bozanich, J.; Tillberg, C.; Luan, X.; Diekwisch, T.G.H. The Glycoprotein/Cytokine Erythropoietin Promotes Rapid Alveolar Ridge Regeneration In Vivo by Promoting New Bone Extracellular Matrix Deposition in Conjunction with Coupled Angiogenesis/Osteogenesis. Int. J. Mol. Sci. 2021, 22, 2788. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Xin, X.R.; Li, W.; Wang, H.C.; Lv, H.X.; Zhou, Y.M. Immediate implant placement in combination with platelet rich-fibrin into extraction sites with periapical infection in the esthetic zone: A case report and review of literature. World J. Clin. Cases 2021, 9, 960–969. [Google Scholar] [CrossRef]
- Dong, K.; Zhou, W.J.; Liu, Z.H.; Hao, P.J. The extract of concentrated growth factor enhances osteogenic activity of osteoblast through PI3K/AKT pathway and promotes bone regeneration in vivo. Int. J. Implant. Dent. 2021, 7, 70. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, J.C.; Yun, P.Y.; Kim, Y.K. Evaluation of bone healing using rhBMP-2 soaked hydroxyapatite in ridge augmentation: A prospective observational study. Maxillofac. Plast. Reconstr. Surg. 2017, 39, 40. [Google Scholar] [CrossRef]
- Handschel, J.; Berr, K.; Depprich, R.A.; Kubler, N.R.; Naujoks, C.; Wiesmann, H.P.; Ommerborn, M.A.; Meyer, U. Induction of osteogenic markers in differentially treated cultures of embryonic stem cells. Head Face Med. 2008, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Schorn, L.; Fienitz, T.; Berndsen, K.; Kubler, N.R.; Holtmann, H.; Rothamel, D. The use of solvent-preserved human and bovine cancellous bone blocks for lateral defect augmentation—An experimental controlled study in vivo. Head Face Med. 2021, 17, 21. [Google Scholar] [CrossRef]
- Dewi, A.H.; Ana, I.D. The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation, sinus augmentation, and periodontal bone defect: A systematic review. Heliyon 2018, 4, e00884. [Google Scholar] [CrossRef] [Green Version]
- Abshagen, K.; Schrodi, I.; Gerber, T.; Vollmar, B. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone. J. Biomed. Mater. Res. A 2009, 91, 557–566. [Google Scholar] [CrossRef]
- Amler, A.K.; Dinkelborg, P.H.; Schlauch, D.; Spinnen, J.; Stich, S.; Lauster, R.; Sittinger, M.; Nahles, S.; Heiland, M.; Kloke, L.; et al. Comparison of the Translational Potential of Human Mesenchymal Progenitor Cells from Different Bone Entities for Autologous 3D Bioprinted Bone Grafts. Int. J. Mol. Sci. 2021, 22, 796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wehrle, E.; Rubert, M.; Muller, R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int. J. Mol. Sci. 2021, 22, 3971. [Google Scholar] [CrossRef] [PubMed]
- Latimer, J.M.; Maekawa, S.; Yao, Y.; Wu, D.T.; Chen, M.; Giannobile, W.V. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front. Bioeng. Biotechnol. 2021, 9, 704048. [Google Scholar] [CrossRef] [PubMed]
- Kuberasampath, T.; Ridge, R.U.S. Bone collagen matrix for implants. Patent No. 5171574, 24 August 1992. [Google Scholar]
- Depprich, R.; Handschel, J.; Sebald, W.; Kubler, N.R.; Wurzler, K.K. [Comparison of the osteogenic activity of bone morphogenetic protein (BMP) mutants]. Mund Kiefer Gesichtschirurgie MKG 2005, 9, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schorn, L.; Sine, A.; Berr, K.; Handschel, J.; Depprich, R.; Kübler, N.R.; Sproll, C.; Rana, M.; Lommen, J. Influence of Xenogeneic and Alloplastic Carriers for Bone Augmentation on Human Unrestricted Somatic Stem Cells. Materials 2022, 15, 4779. https://doi.org/10.3390/ma15144779
Schorn L, Sine A, Berr K, Handschel J, Depprich R, Kübler NR, Sproll C, Rana M, Lommen J. Influence of Xenogeneic and Alloplastic Carriers for Bone Augmentation on Human Unrestricted Somatic Stem Cells. Materials. 2022; 15(14):4779. https://doi.org/10.3390/ma15144779
Chicago/Turabian StyleSchorn, Lara, Anna Sine, Karin Berr, Jörg Handschel, Rita Depprich, Norbert R. Kübler, Christoph Sproll, Majeed Rana, and Julian Lommen. 2022. "Influence of Xenogeneic and Alloplastic Carriers for Bone Augmentation on Human Unrestricted Somatic Stem Cells" Materials 15, no. 14: 4779. https://doi.org/10.3390/ma15144779
APA StyleSchorn, L., Sine, A., Berr, K., Handschel, J., Depprich, R., Kübler, N. R., Sproll, C., Rana, M., & Lommen, J. (2022). Influence of Xenogeneic and Alloplastic Carriers for Bone Augmentation on Human Unrestricted Somatic Stem Cells. Materials, 15(14), 4779. https://doi.org/10.3390/ma15144779