Wear Characteristics of Mg Alloy AZ91 Reinforced with Oriented Short Carbon Fibers
Abstract
:1. Introduction
2. Methodology
Materials
3. Results and Discussion
3.1. Microstructures AZ91-BM and Composite Specimens
3.2. Mechanical Properties
4. Conclusions
- The reinforcing of AZ91 Mg alloy by 23 vol.% short carbon fibers improved the hardness of the two composites (Composite-N and Composite-P) by not less than 51%.
- The YCS of the Composite-N and Composite-P were enhanced over AZ91-BM by 38% and 124%, respectively. In addition, Composite-P recorded the highest UCS compared to Composite-N and AZ91-BM.
- The two composites display notable lower weight loss than AZ91-BM at a constant sliding distance of m, and the applied wear loads from 1 to 3 N, indicating significant improvement in wear resistance in the presence of 23 vol.% oriented short carbon fibers.
- Composite-P shows the lowest weight loss of 0.01785 g compared to the AZ91-BM (0.0771 g) and the Composite-N (0.022 g) at the wear conditions of 2 N applied load and the highest sliding distance of m.
- The two composites show higher wear resistance than AZ91-BM at a constant applied wear load of 2 N and various sliding distances from m. Furthermore, Composite-P possesses the highest wear resistance at a constant applied wear load of 2 N and the highest sliding distance of m.
- Plastic deformation, oxidation, and abrasive wear are the dominant wear mechanisms of AZ91-BM; in contrast, abrasive and delamination wear are mainly the wear mechanisms of the two composites under the applied testing conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, K.; Zhang, L.; Wu, G.; Liu, W.; Ding, W. Effect of Y and Gd Content on the Microstructure and Mechanical Properties of Mg–Y–RE Alloys. J. Magnes. Alloy 2019, 7, 345–354. [Google Scholar] [CrossRef]
- Lyu, J.; Kim, J.; Liao, H.; She, J.; Song, J.; Peng, J.; Pan, F.; Jiang, B. Effect of Substitution of Zn with Ni on Microstructure Evolution and Mechanical Properties of LPSO Dominant Mg–Y–Zn Alloys. Mater. Sci. Eng. A 2020, 773, 138735. [Google Scholar] [CrossRef]
- Tokunaga, T.; Ohno, M.; Matsuura, K. Coatings on Mg Alloys and Their Mechanical Properties: A Review. J. Mater. Sci. Technol. 2018, 34, 1119–1126. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.; Liao, W.; Guo, W.; Li, W.; Jiang, H.; Ding, W. Microstructure and Mechanical Properties of the Carbon Nanotubes Reinforced AZ91D Magnesium Matrix Composites Processed by Cyclic Extrusion and Compression. Mater. Sci. Eng. A 2017, 689, 427–434. [Google Scholar] [CrossRef]
- Bakkar, A.; Ahmed, M.M.Z.; Alsaleh, N.A.; Seleman, M.M.E.S.; Ataya, S. Microstructure, Wear, and Corrosion Characterization of High TiC Content Inconel 625 Matrix Composites. J. Mater. Res. Technol. 2019, 8, 1102–1110. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Hamim, S.U.; Karbalaei Akbari, M.; Fakhrhoseini, S.M.; Khayyam, H.; Pakseresht, A.H.; Ghasali, E.; Zabet, M.; Munir, K.S.; Jia, S.; et al. Carbon Fiber Reinforced Metal Matrix Composites: Fabrication Processes and Properties. Compos. Part A Appl. Sci. Manuf. 2017, 92, 70–96. [Google Scholar] [CrossRef]
- El-Sayed Seleman, M.M.; Ahmed, M.M.Z.; Ataya, S. Microstructure and Mechanical Properties of Hot Extruded 6016 Aluminum Alloy/Graphite Composites. J. Mater. Sci. Technol. 2018, 34, 1580–1591. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Tang, Y.; Shen, B.; Hu, W. Friction and Wear Properties of Short Carbon Fiber Reinforced Aluminum Matrix Composites. Wear 2009, 266, 733–738. [Google Scholar] [CrossRef]
- Aatthisugan, I.; Razal Rose, A.; Selwyn Jebadurai, D. Mechanical and Wear Behaviour of AZ91D Magnesium Matrix Hybrid Composite Reinforced with Boron Carbide and Graphite. J. Magnes. Alloy 2017, 5, 20–25. [Google Scholar] [CrossRef]
- Lim, C.Y.H.; Lim, S.C.; Gupta, M. Wear Behaviour of SiCp-Reinforced Magnesium Matrix Composites. Wear 2003, 255, 629–637. [Google Scholar] [CrossRef]
- García-Rodríguez, S.; Torres, B.; Maroto, A.; López, A.J.; Otero, E.; Rams, J. Dry Sliding Wear Behavior of Globular AZ91 Magnesium Alloy and AZ91/SiCp Composites. Wear 2017, 390–391, 1–10. [Google Scholar] [CrossRef]
- Ataya, S.; Naser Alsaleh, B.A.; Mohamed El-Sayed Seleman, B.M. Strength and Wear Behavior of Mg Alloy AE42 Reinforced with Carbon Short Fibers. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 31–40. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, X.; Han, J.; Du, S. Mechanical Properties of Short Carbon Fiber Reinforced ZrB2-SiC Ceramic Matrix Composites. Mater. Lett. 2008, 62, 2925–2927. [Google Scholar] [CrossRef]
- Qi, L.; Guan, J.; Liu, J.; Zhou, J.; Wei, X. Wear Behaviors of Cf/Mg Composites Fabricated by Extrusion Directly Following Vacuum Pressure Infiltration Technique. Wear 2013, 307, 127–133. [Google Scholar] [CrossRef]
- Ureña, A.; Rams, J.; Escalera, M.D.; Sánchez, M. Characterization of Interfacial Mechanical Properties in Carbon Fiber/Aluminium Matrix Composites by the Nanoindentation Technique. Compos. Sci. Technol. 2005, 65, 2025–2038. [Google Scholar] [CrossRef]
- Tang, Y.; Deng, Y.; Zhang, K.; Liu, L.; Wu, Y.; Hu, W. Improvement of Interface between Al and Short Carbon Fibers by α-Al2O3 Coatings Deposited by Sol-Gel Technology. Ceram. Int. 2008, 34, 1787–1790. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, I.H.; Lee, W.; Ko, S.H.; Jang, J.M.; Lee, T.W.; Lim, S.H.; Park, J.P.; Kim, J.D. Formation and Analysis of SiC Coating Layer on Carbon Short Fiber. Surf. Interface Anal. 2010, 42, 1231–1234. [Google Scholar] [CrossRef]
- Sarapure, S.; Satish, B.M.; Girish, B.M. Basawaraj Microstructure and Mechanical Behavior of Magnesium Alloy AZ91 Hybrid Composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 310, 012161. [Google Scholar] [CrossRef]
- Tian, W.; Qi, L.; Zhou, J.; Guan, J. Effects of the Fiber Orientation and Fiber Aspect Ratio on the Tensile Strength of Csf/Mg Composites. Comput. Mater. Sci. 2014, 89, 6–11. [Google Scholar] [CrossRef]
- Wang, X.J.; Hu, X.S.; Wu, K.; Deng, K.K.; Gan, W.M.; Wang, C.Y.; Zheng, M.Y. Hot Deformation Behavior of SiCp/AZ91 Magnesium Matrix Composite Fabricated by Stir Casting. Mater. Sci. Eng. A 2008, 492, 481–485. [Google Scholar] [CrossRef]
- Ohno, M.; Mirkovic, D.; Schmid-Fetzer, R. Liquidus and Solidus Temperatures of Mg-Rich Mg-Al-Mn-Zn Alloys. Acta Mater. 2006, 54, 3883–3891. [Google Scholar] [CrossRef]
- Anilan Ajukumar, K.; AjithKumar, K.K.; Kunjayyappan Ravikumar, K.; Deva Rajan, T.P.; Subramonia Pillai, U.T.; Chandrasekhara Pai, B. Fabrication and Characterization of Short Carbon Fiber Reinforced AZ91 Mg Alloy Composites. Mater. Sci. Forum 2012, 710, 347–352. [Google Scholar] [CrossRef]
- Afsharnaderi, A.; Malekan, M.; Emamy, M.; Rasizadeh Ghani, J.; Lotfpour, M. Microstructure Evolution and Mechanical Properties of the AZ91 Magnesium Alloy with Sr and Ti Additions in the As-Cast and As-Aged Conditions. J. Mater. Eng. Perform. 2019, 28, 6853–6863. [Google Scholar] [CrossRef]
- Liu, J.; Qi, L.H.; Guan, J.T.; Ma, Y.Q.; Zhou, J.M. Compressive Behavior of C Sf/AZ91D Composites by Liquid-Solid Extrusion Directly Following Vacuum Infiltration Technique. Mater. Sci. Eng. A 2012, 531, 164–170. [Google Scholar] [CrossRef]
- Russell-Stevens, M.; Todd, R.; Papakyriacou, M. The Effect of Thermal Cycling on the Properties of a Carbon Fibre Reinforced Magnesium Composite. Mater. Sci. Eng. A 2005, 397, 249–256. [Google Scholar] [CrossRef]
- Olszówka-Myalska, A.; Myalski, J. Magnesium Alloy AZ31—Short Carbon Fiber Composite Obtained by Pressure Die Casting. Solid State Phenom. 2015, 229, 115–122. [Google Scholar] [CrossRef]
- Fu, S.Y.; Lauke, B.; Mäder, E.; Yue, C.Y.; Hu, X. Tensile Properties of Short-Glass-Fiber- and Short-Carbon-Fiber-Reinforced Polypropylene Composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 1117–1125. [Google Scholar] [CrossRef]
- Kandemir, S.; Gavras, S.; Dieringa, H. High Temperature Tensile, Compression and Creep Behavior of Recycled Short Carbon Fibre Reinforced AZ91 Magnesium Alloy Fabricated by a High Shearing Dispersion Technique. J. Magnes. Alloy 2021, 9, 1753–1767. [Google Scholar] [CrossRef]
- Daoud, A. Wear Performance of 2014 Al Alloy Reinforced with Continuous Carbon Fibers Manufactured by Gas Pressure Infiltration. Mater. Lett. 2004, 58, 3206–3213. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ataya, S.; El-Sayed Seleman, M.M.; Latief, F.H.; Ahmed, M.M.Z.; Hajlaoui, K.; Soliman, A.M.; Alsaleh, N.A.; Habba, M.I.A. Wear Characteristics of Mg Alloy AZ91 Reinforced with Oriented Short Carbon Fibers. Materials 2022, 15, 4841. https://doi.org/10.3390/ma15144841
Ataya S, El-Sayed Seleman MM, Latief FH, Ahmed MMZ, Hajlaoui K, Soliman AM, Alsaleh NA, Habba MIA. Wear Characteristics of Mg Alloy AZ91 Reinforced with Oriented Short Carbon Fibers. Materials. 2022; 15(14):4841. https://doi.org/10.3390/ma15144841
Chicago/Turabian StyleAtaya, Sabbah, Mohamed M. El-Sayed Seleman, Fahamsyah H. Latief, Mohamed M. Z. Ahmed, Khalil Hajlaoui, Ahmed M. Soliman, Naser A. Alsaleh, and Mohamed I. A. Habba. 2022. "Wear Characteristics of Mg Alloy AZ91 Reinforced with Oriented Short Carbon Fibers" Materials 15, no. 14: 4841. https://doi.org/10.3390/ma15144841
APA StyleAtaya, S., El-Sayed Seleman, M. M., Latief, F. H., Ahmed, M. M. Z., Hajlaoui, K., Soliman, A. M., Alsaleh, N. A., & Habba, M. I. A. (2022). Wear Characteristics of Mg Alloy AZ91 Reinforced with Oriented Short Carbon Fibers. Materials, 15(14), 4841. https://doi.org/10.3390/ma15144841