Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Solutions
2.3. Instruments
2.4. Molecular Structure
2.5. Molecular Docking
2.6. Synthesis of Acetylferrocene Azomethine Ligand
2.7. Synthesis of Ferrocene Azomethine Metal Chelates
2.8. Biological Activity
2.8.1. Anti-Pathogenic Activity
2.8.2. Optimization of Anticancer Study
3. Results and Discussions
3.1. Identification of the Acetylferrocene Azomethine Ligand and Its Metal Chelates
3.1.1. Elemental Analyses and Molar Conductivity Study
3.1.2. FT-IR Spectral Studies
3.1.3. Mass Spectrometry
3.1.4. 1H-NMR Spectroscopic Studies
3.1.5. Geometrical Optimization of the Ligand and CoHL Complex
3.1.6. UV–Vis Absorption Investigations
The Calculated Quantum Chemical Parameters | ||
---|---|---|
HL | [Co(HL)(H2O)4]Cl2·2H2O | |
EHOMO (eV) | −5.77 | −1.84 |
ELUMO (eV) | −1.48 | −1.25 |
ΔE (eV) | 4.29 | 3.75 |
χ (eV) | 3.63 | 1.32 |
η (eV) | 2.15 | 1.95 |
σ (eV)−1 | 0.47 | 0.51 |
Pi (eV) | −3.63 | −1.32 |
S (eV)−1 | 0.23 | 0.26 |
ω (eV) | 3.06 | 0.45 |
ΔNmax | 1.69 | 0.68 |
3.1.7. Thermal Analysis
3.1.8. SEM
3.1.9. Structural Manipulation
3.2. Antimicrobial Activities
3.3. Anticancer Activities
3.4. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudbari, H.A.; Iravani, M.R.; Moazam, V.; Askari, B.; Khorshidifard, M.; Habibi, N.; Bruno, G. Synthesis, characterization, X-ray crystal structures and antibacterial activities of Schiff base ligands derived from allylamine and their vanadium (IV), cobalt (III), nickel (II), copper (II), zinc (II) and palladium (II) metal chelates. J. Mol. Struct. 2016, 1125, 113–120. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Khatib, R.M.; Aljohani, F.S.; Al-Abdulkarim, H.A.; Alzahrani, S.; El-Sarrag, G.; Ismael, M. Synthesis, structuralelucidation, DFT calculation, biological studies and DNA inter-action of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem. 2022, 97, 107643. [Google Scholar] [CrossRef] [PubMed]
- Khorshidifard, M.; Rudbari, H.A.; Askari, B.; Sahihi, M.; Farsani, M.R.; Jalilian, F.; Bruno, G. Cobalt (II), copper (II), zinc (II) and palladium (II) Schiff base metal chelates: Synthesis, characterization and catalytic performance in selective oxidation of sulfides using hydrogen peroxide under solvent-free conditions. Polyhedron 2015, 95, 1–13. [Google Scholar] [CrossRef]
- Mishra, A.K.; Manav, N.; Kaushik, N.K. Organotin (IV) complexes of thiohydrazones: Synthesis, characterization and antifungal study. Spectrochim. Acta A 2005, 61, 3097–3101. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dief, A.M.; El-Sagher, H.M.; Shehata, M.R. Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu (II), Pd (II), Zn (II) and Cr (III) complexes. Appl. Organomet. Chem. 2019, 33, e4943. [Google Scholar] [CrossRef]
- Shafaatian, B.; Mousavi, S.S.; Afshari, S. Synthesis, characterization, spectroscopic and theoretical studies of new zinc (II), copper (II) and nickel (II) metal chelates based on imine ligand containing 2-aminothiophenol moiety. J. Mol. Struct. 2016, 1123, 191–198. [Google Scholar] [CrossRef]
- Ibrahim, E.M.M.; Abdel-Rahman, L.H.; Abu-Dief, A.M.; Elshafaie, A.; Hamdan, S.K.; Ahmed, A.M. Electric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexes. Mater. Res. Bull. 2018, 99, 103–108. [Google Scholar] [CrossRef]
- Ghosh, M.; Layek, M.; Fleck, M.; Saha, R.; Bandyopadhyay, D. Synthesis, crystal structure and antibacterial activities of mixed ligand copper (II) and cobalt (II) metal chelates of a NNS Schiff base. Polyhedron 2015, 85, 312–319. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Abu-Dief, A.M.; Díaz-Torres, R.; Sañudo, E.C.; Abdel-Rahman, L.H.; Aliaga-Alcalde, N. Novel sandwich triple-decker dinuclear NdIII-(bis-N, N′-p-bromo-salicylideneamine-1, 2-diaminobenzene) complex. Polyhedron 2013, 64, 203–208. [Google Scholar] [CrossRef]
- Manju, S.; Sreenivasan, K. Detection of glucose in synthetic tear fluid using dually functionalized gold nanoparticles. Talanta 2011, 85, 2643–2649. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdel-Mawgoud, A.A.H. Novel di- and tri-azomethine compounds as chemo sensors for the detection of various metal ions. Int. J. Nanomater. Chem. 2019, 5, 1–17. [Google Scholar]
- Siling, S.A.; Shamahin, S.V.; Ronova, I.A.; Kovalevski, A.Y.; Grachev, A.B.; Tsiganov, I.Y. Poly(Schiff’s bases)-bifluorophores: Synthesis photophysical properties: Nonrediational transfer of energy of electronic excitation. J. Appl. Polym. Sci. 2001, 80, 398–406. [Google Scholar] [CrossRef]
- You, Z.L.; Zhu, H.L.; Liu, W.S. Solvolthermal syntheses and crystal structures of three linear trinuclear Schiff base metal chelates of zinc (II) and cadmium (II). Z. Anorg. Allg. Chem. 2004, 630, 1617–1622. [Google Scholar] [CrossRef]
- Golcu, A.; Tumer, M.; Demirelli, H.; Wheatley, R.A. Cd (II) and Cu (II) metal chelates of polydentate Schiff base ligands: Synthesis, characterization, properties and biological activity. Inorg. Chim. Acta 2005, 358, 1785–1797. [Google Scholar] [CrossRef]
- Willingham, W.M.; Sorrenson, J.R.J. Physiologic role of copper metal chelates in antineoplasia. Trace Elem. Med. 1986, 3, 139–152. [Google Scholar]
- Tapiero, H.; Townsend, T.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003, 57, 386–398. [Google Scholar] [CrossRef]
- Dawood, Z.F.; Al-Bustani, R.R.; Taha, M. Biological activity of the metal chelates of Hg (II), Zn (II) and Cd (II) mixed ligands (thiosemicarbazone and azine) part II. Natl. J. Chem. 2009, 36, 760–768. [Google Scholar]
- Aljohani, E.T.; Shehata, M.R.; Alkhatib, F.; Alzahrani, S.O.; Abu-Dief, A.M. Development and structure elucidation of new VO2+, Mn2+, Zn2+, and Pd2+ complexes based on azomethine ferrocenyl ligand: DNA interaction, antimicrobial, antioxidant, anticancer activities, and molecular docking. Appl. Organomet. Chem. 2021, 35, e6154. [Google Scholar] [CrossRef]
- Van Staveren, D.R.; Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev. 2004, 104, 5931–5985. [Google Scholar] [CrossRef]
- Koepf-Maier, P.; Koepf, H. Non-platinum group metal antitumor agents. History, current status, and perspectives. Chem. Rev. 1987, 87, 1137. [Google Scholar] [CrossRef]
- Shen, W.; Beloussow, K.; Meirim, M.G.; Neuse, E.W.; Caldwell, G.J. Anti-proliferative activity of polymer-bound, monoamine-coordinated platinum metal chelates against LNCaP human metastatic prostate adenocarcinoma cells. Inorg. Organomet. Polym. 2000, 10, 51. [Google Scholar] [CrossRef]
- Neuse, E.W. Polymeric organoiron compounds as prodrugs in cancer research. Macromol. Symp. 2001, 172, 127. [Google Scholar] [CrossRef]
- Epton, R.; Marr, G.; Rogers, G.K. The ferrocene analogues of salicylic acid and aspirin. J. Organomet. Chem. 1976, 110, c42. [Google Scholar] [CrossRef]
- Epton, R.; Marr, G.; Rogers, G.K. The synthesis and reactivity of ferrocenyloxy)-2-tetrahydropyran. J. Organomet. Chem. 1978, 150, 93. [Google Scholar] [CrossRef]
- Sawamura, M.; Sasaki, H.; Nakata, T.; Ito, Y. Synthesis of optically active ferrocene analogues of salicylic acid derivatives and rhodium(ii)-catalyzed asymmetric intramolecular C–H insertion of α-diazo β-keto esters using new chiral carboxylato ligands. Bull. Chem. Soc. Jpn. 1993, 66, 2725. [Google Scholar] [CrossRef]
- Jaouen, G.; Top, S.; Vessières, A.; Leclercq, G.; Quivy, J.; Jin, L.; Croisy, A.C.R. The first organometallic antioestrogens and their anti-proliferative effects. C. R. Acad. Sci. Ser. II 2000, 3, 89. [Google Scholar]
- Top, S.; Vessières, A.; Leclercq, G.; Quivy, J.; Tang, J.; Vaissermann, J.; Huché, M.; Jaouen, G. Synthesis, biochemical properties and molecular modelling studies of organometallic specific estrogen receptor modulators (SERMs), the ferrocifens and hydroxyferrocifens: Evidence for an antiproliferative effect of hydroxyferrocifens on both hormone-dependent and hormone-independent breast cancer cell lines. Chem. Eur. J. 2003, 9, 5223. [Google Scholar]
- Kumar, V.; Manar, K.K.; Gupta, A.N.; Singh, V.; Drew, M.G.B.; Singh, N. Impact of ferrocenyl and pyridyl groups attached to dithiocarbamate moieties on crystal structures and luminescent characteristics of group 12 metal complexes. Organomet. Chem. 2016, 820, 62. [Google Scholar] [CrossRef]
- Sangilipandi, S.; Sutradhar, D.; Bhattacharjee, K.; Kaminsky, W.; Joshi, S.R.; Chandra, A.K.; Rao, K.M. Synthesis, structure, antibacterial studies and DFT calculations of arene ruthenium, Cp∗Rh, Cp∗Ir and tricarbonylrhenium metal chelates containing 2-chloro-3-(3-(2-pyridyl)pyrazolyl)quinoxaline ligand. Inorg. Chim. Acta 2016, 441, 95. [Google Scholar] [CrossRef]
- Dhanaraj, C.J.; Hassan, I.U.; Johnson, J.; Joseph, J.; Joseyphus, R.S. Synthesis, spectral characterization, DNA interaction, anticancer and molecular docking studies on some transition metal chelates with bidentate ligand. J. Photochem. Photobiol. B Biol. 2016, 162, 115. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Adam, M.S.; Abu-Dief, A.M.; Ahmed, H.E.; Nafady, A. Non-linear optical property and biological assays of therapeutic potentials under in vitro conditions of Pd (II), Ag (I) and Cu (II) complexes of 5-diethyl amino-2-({2-[(2-hydroxy-Benzylidene)-amino]-phenylimino}-methyl)-phenol. Molecules 2020, 25, 5089. [Google Scholar] [CrossRef] [PubMed]
- Al-Abdulkarim, H.A.; El-Khatib, R.M.; Aljohani, F.S.; Mahran, A.; Alharbi, A.; Mersal, G.A.M.; El-Metwaly, N.M.; Abu-Dief, A.M. Optimization for synthesized quinoline-based Cr3+, VO2+, Zn2+ and Pd2+ complexes: DNA interaction, bio-logical assay and in-silico treatments for verification. J. Mol. Liq. 2021, 339, 116797. [Google Scholar] [CrossRef]
- Mohamed, G.G.; Omar, M.M.; Ahmed, Y.M. Metal complexes of tridentate Schiff base: Synthesis, characterization, biological activity and molecular docking studies with COVID-19 protein receptor. Z. Anorg. Allg. Chem. 2021, 647, 2201–2218. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdel-Mawgoud, A.A.H. A robust in vitro anticancer, antioxidant and antimicrobial agents based on new metal-azomethine chelates incorporating Ag (I), Pd (II) and VO (II) cations: Probing the aspects of DNA interaction. Appl. Organomet. Chem. 2020, 34, e5373. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 42, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Al-Qahtani, S.D.; Alharbi, A.; Abualnaj, M.M.; Hossan, A.; Alhasani, M.; Abu-Dief, A.M.; Khalif, M.E.; El-Metwaly, N.M. Synthesis and elucidation of binuclear thiazole-based complexes from Co (II) and Cu (II) ions: Conductometry, cytotoxicity and computational implementations for various verifications. J. Mol. Liq. 2022, 349, 118100. [Google Scholar] [CrossRef]
- Khorshidifard, M.; Rudbari, H.A.; Kazemi-Delikani, Z.; Mirkhani, V.; Azadbakht, R. Synthesis, characterization and X-ray crystal structures of Vanadium (IV), Cobalt (III), Copper (II) and Zinc (II) metal chelates derived from an asymmetric bidentate Schiff-base ligand at ambient temperature. J. Mol. Struct. 2015, 1081, 494–505. [Google Scholar] [CrossRef]
- Fathalla, S.K.; El-Ghamry, H.A.; Gaber, M. Ru(III) complexes of triazole based Schiff base and azo dye ligands: An insight into the molecular structure and catalytic role in oxidative dimerization of 2-aminophenol. Inorg. Chem. Commun. 2021, 129, 108616. [Google Scholar] [CrossRef]
- Aljohani, E.T.; Shehata, M.R.; Abu-Dief, A.M. Design, synthesis, structural inspection of Pd2+, VO2+, Mn2+, and Zn2+ chelates incorporating ferrocenyl thiophenol ligand: DNA interaction and pharmaceutical studies. Appl. Organomet. Chem. 2021, 35, e6169. [Google Scholar] [CrossRef]
- Qasem, H.A.; Aouad, M.R.; Al-Abdulkarim, H.A.; Al-Farraj, E.S.; Attar, R.M.S.; El-Metwaly, N.M.; Abu-Dief, A.M. Tailoring of some novel bis-hydrazone metal chelates, spectral based characterization and DFT calculations for pharmaceutical applications and in-silico treatments for verification. J. Mol. Struct. 2022, 1264, 133263. [Google Scholar] [CrossRef]
- Khalil, E.A.M.; Mohamed, G.G. Preparation, spectroscopic characterization and antitumor-antimicrobial studies of some Schiff base transition and inner transition mixed ligand complexes. J. Mol. Struct. 2022, 1249, 131612. [Google Scholar] [CrossRef]
- Abd El-Lateef, H.M.; Khalaf, M.M.; Shehata, M.R.; Abu-Dief, A.M. Fabrication, DFT calculation, and molecular docking of two Fe (III) imine chelates as anti-COVID-19 and pharmaceutical drug candidate. Int. J. Mol. Sci. 2022, 23, 3994. [Google Scholar] [CrossRef] [PubMed]
- Abo-Aly, M.M.; Salem, A.M.; Sayed, M.A.; Abdel Aziz, A.A. Spectroscopic and structural studies of the Schiff base 3-methoxy-N-salicylidene-o-amino phenol metal chelates with some transition metal ions and their antibacterial, antifungal activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Menat, S.; Rudbari, H.A.; Askari, B.; Farsani, M.R.; Jalilian, F.; Dini, G. Synthesis and characterization of insoluble cobalt (II), nickel (II), zinc (II) and palladium (II) acetylferrocene imine complexes: Heterogeneous catalysts for oxidation of sulfides with hydrogen peroxide. C. R. Chim. 2016, 19, 347–356. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Moustafa, H.; Abdel-Mawgoud, A.A.H. Design and nonlinear optical properties (NLO) using DFT approach of new Cr (III), VO (II), and Ni (II) chelates incorporating tri-dentate imine ligand for DNA interaction, antimicrobial, anticancer activities and molecular docking studies. Arab. J. Chem. 2020, 13, 649–670. [Google Scholar] [CrossRef]
- Deghadi, R.G.; Abbas, A.A.; Mohamed, G.G. Theoretical and experimental investigations of new bis(amino triazole) Schiff base ligand: Preparation of its UO2(II), Er (III) and La (III) complexes, studying of their antibacterial, anticancer and molecular docking. Appl. Organomet. Chem. 2021, 35, e6292. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, W.H.; Mahmoud, N.F.; Mohamed, G.G.; El-Bindary, A.A.; El-Sonbati, A.Z. Supramolecular structural, thermal properties and biological activity of 3-(2-methoxyphenoxy)propane-1,2-diol metal chelates. J. Mol. Struct. 2015, 1086, 266. [Google Scholar] [CrossRef]
- Ahmed, Y.M.; Mohamed, G.G. Synthesis, spectral characterization, antimicrobial evaluation and molecular docking studies on new metal complexes of novel Schiff base derived from 4,6-dihydroxy-1,3-phenylene-diethanone. J. Mol. Struct. 2022, 1256, 132496. [Google Scholar] [CrossRef]
- Ahmed, Y.M.; Omar, M.M.; Mohamed, G.G. Synthesis, spectroscopic characterization, and thermal studies of novel Schiff base complexes. Theoretical simulation studies on coronavirus (COVID-19) using molecular docking. J. Iran. Chem. Soc. 2022, 19, 901–919. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Mahmoud, N.F.; Mohamed, G.G. New nanobidentate Schiff base ligand of 2-aminophenol with 2-acetylferrocene with some lanthanide metal ions: Synthesis, characterization and Hepatitis A, B, C and breast cancer docking studies. J. Coord. Chem. 2017, 70, 552–3574. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Mahmoud, N.F.; Mohamed, G.G. Mixed ligand metal chelates of the novel nanoferrocene based Schiff base ligand (HL): Synthesis, spectroscopic characterization, MOE studies and antimicrobial/anticancer activities. J. Organomet. Chem. 2017, 848, 288–301. [Google Scholar] [CrossRef]
- Khan, M.I.; Khan, A.; Hussain, I.M.; Gul, S.; Iqbal, M.; Rahman, I.U.; Khuda, F. Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal chelates. Inorg. Chem. Commun. 2013, 35, 104–109. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Metwaly, N.M.; Alzahrani, S.O.; Alkhatib, F.M.; Abualnaja, M.; El-Dabea, T.; Ali, M.A.A. Synthesis and characterization of Fe (III), Pd (II) and Cu (II)-thiazole complexes; DFT, pharmacophore modeling, in-vitro assay and DNA binding studies. J. Mol. Liq. 2021, 326, 115277. [Google Scholar] [CrossRef]
- Tweedy, B.G. Plant extracts with metal ions as potential antimicrobial agents. Phytopathology 1964, 55, 910–914. [Google Scholar]
- Shakir, M.; Hanif, S.; Sherwani, M.A.; Mohammad, O.; Al-Resayes, S.I. Pharmacologically significant metal chelates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) of novel Schiff base ligand, (E)-N-(furan-2-yl methylene) quinolin-8-amine: Synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies. J. Mol. Struct. 2015, 1092, 143–159. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdelhamid, A.A.; Marzouk, A.A.; Shehata, M.R.; Bakheet, M.A.; Almaghrabi, O.A.; Nafady, A. Synthesis and characterization of new Cr (III), Fe (III) and Cu (II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochim. Acta A 2020, 228, 117700. [Google Scholar] [CrossRef]
- Mishra, A.P.; Mishra, R.K.; Pandey, M.D. Synthetic, spectral, structural and antimicrobial studies of some Schiff bases 3d metal chelates. Russ. J. Inorg. Chem. 2011, 56, 1757–1764. [Google Scholar] [CrossRef]
- Chohan, Z.H.; Pervez, H.; Rauf, A.; Khan, K.M.; Supuran, C.T. Isatin-derived antibacterial and antifungal compounds and their transition metal chelates. J. Enzyme Inhib. Med. Chem. 2004, 19, 417. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Moustafa, H.; Hamdan, S.K. Ni (II) and Cu (II) complexes with ONNO asymmetric tetradentate Schiff base ligand: Synthesis, spectroscopic characterization, theoretical calculations, DNA interaction and antimicrobial studies. Appl. Organomet. Chem. 2017, 31, e3555. [Google Scholar] [CrossRef]
- Benson, J.R.; Jatoi, I. The global breast cancer burden. Future Oncol. 2012, 8, 697–702. [Google Scholar] [CrossRef]
- Huang, R.; Wallqvist, A.; Covell, D.G. Anticancer metal compounds in NCI’s tumor-screening database: Putative mode of action. Biochem. Pharmacol. 2005, 69, 1009–1039. [Google Scholar] [CrossRef] [PubMed]
- Beteringhe, A.; Racuciu, C.; Balan, C.; Stoican, E.; Patron, L. Molecular docking studies involving transitional metal chelates (Zn (II), Co (II), Cu (II), Fe (II), Ni (II) with cholic acid (AC) as ligand against aurora A kinase. Adv. Mater. Res. 2013, 787, 236–240. [Google Scholar] [CrossRef]
Compound (Molecular Formula) | Colour (%Yield) | M.p. (°C) | % Calcd. (Found) | Λm Ω−1 mol−1 cm2 | ||||
---|---|---|---|---|---|---|---|---|
C | H | N | Cl | M | ||||
HL (C18H17NOFe) | Greenish yellow (80) | 92–95 | 67.61 (66.20) | 5.32 (5.57) | 4.38 (4.58) | ------ | 17.68 (18.18) | ------ |
[Cr(HL)(H2O)3Cl]Cl2·3H2O (C18H29NO6Cl3CrFe) | Black (70) | >300 | 36.86 (37.00) | 4.95 (4.39) | 2.39 (2.68) | 18.17 (18.78) | 18.52 (18.01) | 110 |
[Mn(HL)(H2O)4]Cl2·H2O (C18H27NO6Cl2MnFe) | Black (75) | >300 | 40.34 (40.65) | 5.04 (4.19) | 2.61 (2.52) | 13.26 (14.18) | 20.63 (20.14) | 104 |
[Fe(HL)(H2O)2Cl2]Cl·3H2O (C18H27NO6Cl3Fe2) | Black (79) | >300 | 37.73 (37.56) | 4.72 (3.71) | 2.45 (2.57) | 18.60 (18.82) | 19.74 (20.62) | 59 |
[Co(HL)(H2O)4]Cl2·2H2O (C18H29NO7Cl2CoFe) | Black (82) | 137–139 | 38.81 (38.53) | 5.21 (5.34) | 2.52 (3.03) | 12.76 (12.34) | 20.58 (20.94) | 103 |
[Ni(HL)(H2O)3Cl]Cl·2H2O (C18H27NO6Cl2NiFe) | Brown (86) | >300 | 40.04 (40.78) | 5.00 (4.75) | 2.59 (2.86) | 13.16 (13.67) | 21.41 (21.02) | 66 |
[Cu(HL)(H2O)2Cl2]·2H2O (C18H25NO5Cl2CuFe) | Brown (87) | >300 | 41.06 (41.58) | 4.75 (5.21) | 2.66 (2.94) | 13.50 (13.22) | 22.81 (22.09) | 22 |
[Zn(HL)Cl2]·2H2O (C18H21NO3Cl2ZnFe) | Black (75) | 143–145 | 43.95 (44.56) | 4.27 (4.72) | 2.85 (2.03) | 14.45 (14.14) | 24.72 (24.14) | 19 |
[Cd(HL)(H2O)2Cl2] (C18H21NO3Cl2CdFe) | Brown (88) | 208–210 | 40.11 (40.87) | 3.90 (3.48) | 2.60 (2.72) | 13.18 (13.76) | 31.29 (31.54) | 5 |
HL | CrHL | MnHL | FeHL | CoHL | NiHL | CuHL | ZnHL | CdHL | Assignment |
---|---|---|---|---|---|---|---|---|---|
3444 br | 3428 br | 3428 br | 3415 br | 3423 br | 3416 br | 3417 br | 3446 br | 3411 br | υ(OH) |
1655 sh | 1620 m | 1626 m | 1604 m | 1612 m | 1624 m | 1597 m | 1614 sh | 1649 m | υ(C=N) |
1277 w | 1267 w | 1281 w | 1282 w | 1283 w | 1277 w | 1270 w | 1282 w | 1281 w | υ(C-O) |
------ | 970 s, 874 w | 960 s, 815 w | 970 s, 831 w | 905 s, 824 s | 960 s, 820 w | 980 s, 853 w | ----------- | 894 w, 830 m | υ(H2O) |
------- | 604 w | 610 s | 620 s | 613 m | 621 w | 681 w | ----------- | 617 sh | M-O stretch of coordinated water |
------- | 520 s | 598 w | 597 w | 531 w | 533 s | 584 s | 528 s | 534 w | M-O |
------ | 450 s | 492 s | 472 w | 466 s | 499 s | 460 s | 486 w | 490 w | M-N |
Complex | TG Range (°C) | DTGmax (°C) | n* | Mass Loss Total Mass Loss Found (Calcd) % | Assignment | Residues |
---|---|---|---|---|---|---|
HL | 35–260 | 198 | 1 | 57.13 (57.28) | - Disposal of C13H13N | FeO |
260–695 | 363, 689 | 2 | 20.53 (20.03) 77.66 (77.31) | - Disposal of C5H4. | ||
CrHL | 30–140 | 77 | 1 | 9.17 (9.22) | - Disposal of 3H2O. | ½Cr2O3 + FeO + 7C |
140–1000 | 854 | 1 | 50.72 (51.11) 59.88 (60.32) | - Disposal of 3HCl, H2O and C11H18NO0.5. | ||
MnHL | 45–170 | 129 | 1 | 7.75 (6.54) | - Disposal of H2O and NH3. | MnO + FeO |
170–440 | 179, 254, 411 | 3 | 10.26 (10.08) | - Disposal of 3H2O. | ||
440–685 | 613 | 1 | 19.23 (18.86) | - Disposal of 2HCl and C2H4. | ||
685–1000 | 967 | 1 | 35.95 (37.72) 73.19 (73.20) | - Disposal of C16H10. | ||
FeHL | 50–275 | 100 | 1 | 13.80 (12.40) | - Disposal of 3H2O and NH3. | ½Fe2O3 + FeO + 12C |
275–580 | 350 | 1 | 15.90 (15.55) | - Disposal of 2HCl and CH4. | ||
580–1000 | 634, 666 | 2 | 20.21 (20.35) 49.91 (48.12) | - Disposal of C5H12ClO0.5. | ||
CoHL | 45–190 | 129 | 1 | 12.52 (12.40) | - Disposal of 2H2O, NH3 and CH4. | CoO + FeO + 4C |
190–1000 | 346, 587 | 2 | 51.94 (52.65) 64.45 (65.05) | - Disposal of 3H2O and C13H12Cl2. | ||
NiHL | 35–145 | 81 | 1 | 9.36 (9.88) | - Disposal of 2H2O and NH3. | NiO + FeO + 6C |
145–355 | 224 | 1 | 16.60 (16.40) | - Disposal of 2H2O, HCl and CH4. | ||
335–1000 | 410, 865, 968 | 3 | 33.97 (33.09) 59.90 (59.31) | - Disposal of C11H11Cl. | ||
CuHL | 45–130 | 91 | 1 | 5.78 (6.84) | - Disposal of 2H2O. | CuO + FeO + 7C |
130–1000 | 161, 645 | 2 | 48.38 (48.29) 54.15 (55.13) | - Disposal of H2O and C11H19NCl2. | ||
ZnHL | 45–275 | 77 | 1 | 6.69 (6.92) | - Disposal of H2O and CH4. | ZnO + FeO + 3C |
275–730 | 402, 585 | 2 | 24.06 (24.01) | - Disposal of C2H4, 2HCl and NH3. | ||
730–1000 | 954 | 1 | 30.82 (30.52) 61.56 (61.44) | - Disposal of C12H6. | ||
CdHL | 40–220 | 185 | 1 | 27.68 (27.86) | - Disposal of NH3, H2O, C3H6 and 2HCl. | CdO + FeO |
220–600 | 236, 266, 519 | 3 | 35.18 (34.91) 62.86 (62.77) | - Disposal of C15H8. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalaf, M.M.; Abd El-Lateef, H.M.; Gouda, M.; Sayed, F.N.; Mohamed, G.G.; Abu-Dief, A.M. Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene. Materials 2022, 15, 4842. https://doi.org/10.3390/ma15144842
Khalaf MM, Abd El-Lateef HM, Gouda M, Sayed FN, Mohamed GG, Abu-Dief AM. Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene. Materials. 2022; 15(14):4842. https://doi.org/10.3390/ma15144842
Chicago/Turabian StyleKhalaf, Mai M., Hany M. Abd El-Lateef, Mohamed Gouda, Fatma N. Sayed, Gehad G. Mohamed, and Ahmed M. Abu-Dief. 2022. "Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene" Materials 15, no. 14: 4842. https://doi.org/10.3390/ma15144842
APA StyleKhalaf, M. M., Abd El-Lateef, H. M., Gouda, M., Sayed, F. N., Mohamed, G. G., & Abu-Dief, A. M. (2022). Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene. Materials, 15(14), 4842. https://doi.org/10.3390/ma15144842