Effect of Dolomite Addition on the Structure and Properties of Multicomponent Amphibolite Glasses
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Study of Amphibolite Glasses after the Melting Process
3.2. Study of Amphibolite Glasses after the Crystallization Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khater, G. Glass-ceramics in the CaO–MgO–Al2O3–SiO2 system based on industrial waste materials. J. Non-Cryst. Solids 2010, 356, 3066–3070. [Google Scholar] [CrossRef]
- Barbieri, L.; Corradi, A.; Lancellotti, I.; De Oliveira, A.P.N.; Alarcon, O.E. Nucleation and crystal growth of a MgO-CaO-Al2O3-SiO2 Glass with Added Steel Fly Ash. J. Am. Ceram. Soc. 2004, 85, 670–674. [Google Scholar] [CrossRef]
- Rincón, J.M. Vitreous and ceramic processing for the recycling of industrial wastes. Key Eng. Mater. 2016, 663, 11–22. [Google Scholar] [CrossRef]
- Korwin-Edson, M.L.; Hofmann, D.A.; McGinnis, P.B. Strength of high performance glass reinforcement fiber. Int. J. Appl. Glas. Sci. 2012, 3, 107–121. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Vulfson, Y.; Zheng, Q.J.; Luo, J.W.; Kim, S.H.; Yue, Y.Z. Impact of fiberizing method on physical properties of glass wool fibers. J. Non-Cryst. Solids 2017, 476, 122–127. [Google Scholar] [CrossRef]
- Li, H.; Richards, C.; Watson, J. High-performance glass fiber development for composite applications. Int. J. Appl. Glas. Sci. 2013, 5, 65–81. [Google Scholar] [CrossRef]
- Monaldo, E.; Nerilli, F.; Vairo, G. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos. Struct. 2019, 214, 246–263. [Google Scholar] [CrossRef]
- Ivanič, A.; Kravanja, G.; Kidess, W.; Rudolf, R.; Lubej, S. The Influences of Moisture on the Mechanical, Morphological and Thermogravimetric Properties of Mineral Wool Made from Basalt Glass Fibers. Materials 2020, 13, 2392. [Google Scholar] [CrossRef]
- Yliniemi, J.; Kinnunen, P.; Karinkanta, P.; Illikainen, M. Utilization of Mineral Wools as Alkali-Activated Material Precursor. Materials 2016, 9, 312. [Google Scholar] [CrossRef]
- Papadopoulos, A. State of the art in thermal insulation materials and aims for future developments. Energy Build. 2005, 37, 77–86. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010, 31, 4244–4250. [Google Scholar] [CrossRef]
- Gunschera, J.; Sibel, M.; Salthammer, T.; Andersen, J.R. Impact of building materials on indoor formaldehyde levels: Effect of ceiling tiles, mineral fiber insulation and gypsum board. Build. Environ. 2013, 64, 138–145. [Google Scholar] [CrossRef]
- Karamanos, A.; Hadiarakou, S.; Papadopoulos, A.M. The impact of temperature and moisture on the thermal performance of stone wool. Energy Build. 2008, 40, 1402–1411. [Google Scholar] [CrossRef]
- Drozdyuk, T.; Aizenshtadt, A.; Tutygin, A.; Frolova, M. Basalt Fiber Insulating Material with a Mineral Binding Agent for Industrial Use; MEACS2015 IOP Publishing IOP Conference Series Materials: Materials Science and Engineering; IOP: Bristol, UK, 2016; Volume 124, p. 012123. [Google Scholar] [CrossRef] [Green Version]
- Toman, J.; Vimmrová, A.; Černý, R. Long-term on-site assessment of hygrothermal performance of interior thermal insulation system without water vapour barrier. Energy Build. 2009, 41, 51–55. [Google Scholar] [CrossRef]
- Vrána, T.; Gudmundsson, K. Comparison of fibrous insulations—Cellulose and stone wool in terms of moisture properties resulting from condensation and ice formation. Constr. Build. Mater. 2010, 24, 1151–1157. [Google Scholar] [CrossRef]
- Jerman, M.; Černý, R. Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy Build. 2012, 53, 39–46. [Google Scholar] [CrossRef]
- Vrána, T.; Björk, F. Frost formation and condensation in stone–wool insulations. Constr. Build. Mater. 2009, 23, 1775–1787. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Deák, T.; Czigány, T. Chemical composition and mechanical properties of basalt and glass fibers: A comparison. Text. Res. J. 2009, 79, 645–651. [Google Scholar] [CrossRef]
- Gutnikov, S.I.; Malakho, A.P.; Lazoryak, B.I.; Loginov, V.S. Influence of alumina on the properties of continuous basalt fibers. Russ. J. Inorg. Chem. 2009, 54, 191–196. [Google Scholar] [CrossRef]
- Manylov, M.S.; Gutnikov, S.I.; Lipatov, Y.V.; Malakho, A.P.; Lazorya, B.I. Effect of deferrization on continuous basalt fiber properties. Mendeleev Commun. 2015, 25, 386–388. [Google Scholar] [CrossRef]
- Manylov, M.S.; Gutnikov, S.; Pokholok, K.V.; Lazoryak, B.I.; Lipatov, Y.V. Crystallization mechanism of basalt glass fibers in air. Mendeleev Commun. 2013, 23, 361–363. [Google Scholar] [CrossRef]
- Tatarintseva, O.; Khodakova, N.; Uglova, T. Dependence of the viscosity of basalt melts on the chemical composition of the initial mineral material. Glass Ceram. 2012, 68, 323–326. [Google Scholar] [CrossRef]
- Bauera, F.; Kempfa, M.; Weilanda, F.; Middendorf, P. Structure-property relationships of basalt fibers for high performance applications. Compos. Part B Eng. 2018, 145, 121–128. [Google Scholar] [CrossRef]
- Kochergin, A.V.; Granovskaya, N.V.; Kochergin, D.V.; Savchenko, V.A.; Galimov, N.R. Ways to supply gabbro-basalt raw materials to mineral fiber producers. Glas. Ceram. 2013, 69, 405–408. [Google Scholar] [CrossRef]
- Širok, B.; Bullen, F.P.; Blagojevicć, B. Mineral Wool: Production and Properties; Woodhead Publishing: Cambridge, UK; p. 192. Available online: http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=1639563 (accessed on 12 May 2022).
- Lubas, M.; Wyszomirski, P. Niekonwencjonalne wykorzystanie amfibolitów dolnośląskich/Unconventional use of Lower Silesian amphibolites. Mater. Ceram. Ceram. Mater. 2009, 61, 31–34. [Google Scholar]
- Maliszewski, M.; Pomorski, A.; Cichoń, T. Możliwości wykorzystania trudno zbywalnych frakcji amfibolitu ze złoża pagórki wschodnie/Possibilities of utilization of difficult-to-market amphibolite fractions from the pagórki wschodnie deposit. Górnictwo Odkryw. 2017, 5, 4–10. [Google Scholar]
- Bodnárová, L.; Ťažký, M.; Ťažká, L.; Hela, R.; Pikna, O.; Sitek, L. Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concrete. Sustainability 2020, 12, 9920. [Google Scholar] [CrossRef]
- Operta, M. Non-metallic mineral resources in the Vareš region. Acta Geogr. Bosniae Herzeg. 2015, 3, 35–42. [Google Scholar]
- Lampropoulou, P.; Papoulis, D.; Metaxa, E.; Tsikouras, B.; Hatzipanagioutou, K.; Tzevelekou, T.H.; Karageorgis, A. Aassesment of the quality of metamorphic and igneous rocks from terpni (serres, north greece) for their use as raw materials in the production of stonewool. Bull. Geol. Soc. Greece 2016, 50, 1913–1922. [Google Scholar] [CrossRef] [Green Version]
- Kibol, V.; Kibol, R. Method for Producing Fibers from Rocks and a Plant for Carrying Out Said Method. U.S. Patent 12/866,475, 16 December 2010. [Google Scholar]
- Schinkinger, T.; Mayer, A. Raw Material for Producing Basalt Fibers. U.S. Patent 9,073,780, 12 December 2013. [Google Scholar]
- Bąk, B.; Radwanek-Bąk, B.; Wyszomirski, P. Aktualny przegląd krajowych złóż dolomitów w aspekcie wykorzystania w przemyśle materiałów ogniotrwałych/Current overview of domestic dolomite deposits in terms of use in refractory industry. Gospod. Surowcami Miner. 2011, 27, 21–45. [Google Scholar]
- Yue, Y.; Zheng, G. Fiber spinnability of glass melts. Int. J. Appl. Glas. Sci. 2017, 8, 37–47. [Google Scholar] [CrossRef]
- Lund, M.D.; Yue, Y. Impact of drawing stress on the tensile strength of oxide glass fibers. J. Am. Ceram. Soc. 2010, 93, 3236–3243. [Google Scholar] [CrossRef]
- Nascimento, M.L.F.; Souza, L.A.; Ferreira, E.B.; Zanotto, E.D. Can glass stability parameters infer glass forming ability? J. Non-Cryst. Solids 2005, 351, 3296–3308. [Google Scholar] [CrossRef] [Green Version]
- Hrubý, A. Evaluation of glass-forming tendency by means of DTA. Czechoslov. J. Phys. 1972, 22, 1187–1193. [Google Scholar] [CrossRef]
- Kozmidispetrovic, A.; Šesták, J. Forty years of the Hrubý glass-forming coefficient via DTA when comparing other criteria in relation to the glass stability and vitrification ability. J. Therm. Anal. 2012, 110, 997–1004. [Google Scholar] [CrossRef]
- Fotheringham, U. Viscosity of Glass and Glass-Forming Melts; Springer Handbook of Glass: Springer Handbooks; Springer: Cham, Switzerland; pp. 79–112. [CrossRef]
- Kang, J.; Cheng, J.; Lou, X.; Tian, P.; Liu, K. Fabrication and Characterization of Diopside-based Glass-Ceramics from Granite Wastes. Trans. Indian Ceram. Soc. 2015, 74, 218–224. [Google Scholar] [CrossRef]
- Effendy, E.; Abdul Wahab, Z.; Mohamed Kamari, H.; Matori, K.A.S.; Ab Aziz, H.J.; Zaid, M.H.M. Structural and optical properties of Er3+-doped willemite glass-ceramics from waste materials. Optik 2016, 127, 11698–11705. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Chen, J. Utilization of coal fly ash for the production of glass-ceramics with unique performances: A brief review. J. Mater. Sci. Technol. 2014, 30, 1208–1212. [Google Scholar] [CrossRef]
- Sitarz, M. The structure of simple silicate glasses in the light of Middle Infrared spectroscopy studies. J. Non-Cryst. Solids 2011, 357, 1603–1608. [Google Scholar] [CrossRef]
- Kucharczyk, S.; Sitarz, M.; Zajac, M.; Deja, J. The effect of CaO/SiO2 molar ratio of CaO-Al2O3-SiO2 glasses on their structure and reactivity in alkali activated system. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 194, 163–171. [Google Scholar] [CrossRef]
- Partyka, J.; Sitarz, M.; Leśniak, M.; Gasek, K.; Jeleń, P. The effect of SiO2/Al2O3 ratio on the structure and microstructure of the glazes from SiO2–Al2O3–CaO–MgO–Na2O–K2O system. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lin, Q.; Lu, S.; He, Y.; Liao, G.; Ke, Y. Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag. Ceram. Int. 2014, 40, 7297–7305. [Google Scholar] [CrossRef]
- Stoch, L.; Wacławska, I.; Środa, M. Thermal study of the influence of chemical bond ionicity on the glass transformation in (Na2O, CaO, MgO)-Al2O3-SiO2 glasses. J. Therm. Anal. 2004, 77, 57–63. [Google Scholar] [CrossRef]
- Fang, Y.; Zheng, Z.; Yanling, Z.; Tuo, W. Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags. Int. J. Miner. Metall. Mater. 2021, 29, 1522–1531. [Google Scholar] [CrossRef]
- Zawada, A.; Lubas, M.; Przerada, I.; Sitarz, M.; Adamczyk-Habrajska, M. The effect of the reducing melting atmosphere on coordination moieties in aluminosilicate glasses. J. Mol. Struct. 2020, 1218, 128474. [Google Scholar] [CrossRef]
- Lü, J.F.; Jin, Z.N.; Yang, H.Y.; Tong, L.L.; Chen, G.B.; Xiao, F.X. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–FeO–12 wt% ZnO–3 wt% Al2O3 slags. Int. J. Miner. Metall. Mater. 2017, 24, 756–767. [Google Scholar] [CrossRef]
- Joseph, K.; Jolley, K.; Smith, R. Iron phosphate glasses: Structure determination and displacement energy thresholds, using a fixed charge potential model. J. Non-Cryst. Solids 2015, 411, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Goj, P.; Ciecińska, M.; Szumera, M.; Stoch, P. Thermal properties of Na2O–P2O5–Fe2O3 polyphosphate glasses. J. Therm. Anal. 2020, 142, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Lubas, M.; Sitarz, M.; Fojud, Z.; Jurga, S. Structure of multicomponent SiO2–Al2O3–Fe2O3–CaO–MgO glasses for the preparation of fibrous insulating materials. J. Mol. Struct. 2005, 744, 615–619. [Google Scholar] [CrossRef]
- Öveçoglu, M.L.; Kuban, B.; Özer, H. Characterization and crystallization kinetics of a diopside-based glass-ceramic developed from glass industry raw materials. J. Eur. Ceram. Soc. 1997, 17, 957–962. [Google Scholar] [CrossRef]
- Cho, Y.S.; Jo, Y.H.; Choi, H.R.; Shin, D.W.; Chung, K.W. Influences of alkali oxides on crystallization and dielectric properties of anorthite-based low temperature dielectrics. J. Ceram. Soc. Jpn. 2008, 116, 825–828. [Google Scholar] [CrossRef] [Green Version]
- Bayazit, M.; Isik, I.; Cereci, S. FT-IR Spectroscopic Analysis of Potsherds Excavated from The First Settlement Layer of Kuriki Mound. Turkey. In International Journal of Modern Physics: Conference Series, Proceedings of the International Conference on Ceramics, Bikaner, India, 12–13 December 2012; World Scientific Publishing Company: Singapore, 2013; Volume 22, pp. 103–111. [Google Scholar] [CrossRef] [Green Version]
- Swamy, V.; Dubrovinsky, L.S.; Tutti, F. High-Temperature Raman Spectra and Thermal Expansion of Wollastonite. J. Am. Ceram. Soc. 2005, 80, 2237–2247. [Google Scholar] [CrossRef]
- Grelowska, I.; Kosmal, M.; Reben, M.; Pichniarczyk, P.; Sitarz, M.; Olejniczak, Z. Structural and thermal studies of modified silica-strontium-barium glass from CRT. J. Mol. Struct. 2016, 1126, 265–274. [Google Scholar] [CrossRef]
- Keyvani, N.; Marghussian, V.K.; Rezaie, H.R.; Kord, M. Effect of Al2O3 Content on Crystallization Behavior, Microstructure, and Mechanical Properties of SiO2-Al2O3-CaO-MgO Glass-Ceramics. Int. J. Appl. Ceram. Technol. 2011, 8, 203–213. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Liu, W.; Lv, X.; Bai, C.; Wang, L. Relationship between structure and viscosity of CaO–SiO2–Al2O3–MgO–TiO2 slag. J. Non-Cryst. Solids 2014, 402, 214–222. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.; Yin, L.; Kang, J.; Qu, Y.; Liang, X.; Yue, Y. The fiber spinnability and mixed alkaline effect for calcium magnesium aluminosilicate glasses. J. Non-Cryst. Solids 2021, 557, 120643. [Google Scholar] [CrossRef]
- Kjeldsen, J.; Smedskjaer, M.M.; Potuzak, M.; Yue, Y.Z. Role of elastic deformation in determining the mixed alkaline earth effect of hardness in silicate glasses. J. Appl. Phys. Lett. 2015, 117, 034903. [Google Scholar] [CrossRef]
- Jha, P.; Singh, K. Effect of Field Strength and Electronegativity of CaO and MgO on Structural and Optical Properties of SiO2–K2O-CaO-MgO Glasses. Silicon 2015, 8, 437–442. [Google Scholar] [CrossRef]
- Montoya-Quesada, E.; Villaquirán-Caicedo, M.A.; Mejía de Gutiérrez, R. New glass-ceramic from ternary–quaternary mixtures based on Colombian industrial wastes: Blast furnace slag, cupper slag, fly ash and glass cullet. Boletín De La Soc. Española De Cerámica Y Vidr. 2021, in press. [Google Scholar] [CrossRef]
Raw Material | Composition, [wt.%] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | K2O | CaO | TiO2 | MnO | Fe2O3 | ZrO2 | PbO | |
Amphibolite | 5.41 | 4.78 | 14.1 | 54.6 | <0.10 | <0.1 | 0.22 | 6.08 | 1.08 | 0.25 | 10.3 | <0.1 | - |
Dolomite | 0.37 | 36.93 | 1.37 | 3.27 | 0.06 | 0.08 | 0.19 | 59.34 | 0.04 | 0.19 | 0.83 | 0.26 | 0.04 |
Glass | Component, [wt.%] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | MgO | Fe2O3 | K2O | Na2O | TiO2 | P2O5 | MnO | ZrO2 | SO3 | |
Set 1* Amphibolite Glass | 54.6 | 14.1 | 6.08 | 4.78 | 10.3 | 0.22 | 5.41 | 1.08 | 0.10 | 0.25 | 0.10 | 0.10 |
Set 2* Amphibolite Glass 90 wt.%/Dolomite 10 wt.% | 49.47 | 12.83 | 11.41 | 8.00 | 9.35 | 0.22 | 4.91 | 0.98 | 0.09 | 0.24 | 0.11 | 0.10 |
Set 3* Amphibolite Glass 80 wt.%/Dolomite 20 wt.% | 44.33 | 11.55 | 16.73 | 11.21 | 8.41 | 0.21 | 4.40 | 0.87 | 0.09 | 0.24 | 0.12 | 0.09 |
Glass | Tg [°C] | Tc1 [°C] | Tc1max [°C] | Tc2max [°C] | Tc3max [°C] | Tm [°C] | KA | KH | KSP |
---|---|---|---|---|---|---|---|---|---|
Set 1* 100 wt.% Amphibolite | 645 | 665 | 681 | 842 | 1086 | 1151 | 20 | 0.04 | 0.50 |
Set 2* 90 wt.% Amphibolite/10 wt.% Dolomite | 640 | 675 | 741 | 871 | 1097 | 1156 | 35 | 0.07 | 3.61 |
Set 3* 80 wt.% Amphibolite/20 wt.% Dolomite | 692 | 710 | 801 | 887 | 1050 | 1168 | 18 | 0.04 | 2.37 |
Glass | Temperature, °C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
660 | 700 | 740 | 860 | 900 | 940 | 980 | 1020 | 1060 | 1100 | 1140 | 1180 | |
logη, dPas | ||||||||||||
Amphibolite glass Tg = 640 °C | 13.6 | 11.4 | 9.8 | 6.5 | 5.8 | 5.2 | 4.6 | 4.2 | 3.8 | 3.4 | 3.2 | 2.8 |
Amphibolite glass 90 wt.%/10 wt.% Dolomite, Tg = 645 °C | 13.0 | 11.0 | 9.4 | 6.3 | 5.6 | 5.0 | 4.5 | 4.1 | 3.7 | 3.3 | 3.0 | 2.7 |
Amphibolite glass 80 wt.% /20 wt.% Dolomite, Tg = 692 °C | 14.3 | 12.0 | 10.2 | 6.8 | 6.0 | 5.3 | 4.8 | 4.3 | 3.9 | 3.5 | 3.3 | 2.9 |
Melt/Crystallization Parameters [°C]/Time h | Type of Glass | ||
---|---|---|---|
Set 1 Amphibolite Glass 100 wt.% | Set 2 Amphibolite Glass 90 wt.% Dolomite 10 wt.% | Set 3 Amphibolite Glass 80 wt.% Dolomite 20 wt.% | |
HV 0.05 | HV 0.05 | HV 0.05 | |
Melt (glass) | 690 | 751 | 769 |
800/5 | 693 | 756 | 773 |
800/10 | 695 | 712 | 757 |
900/5 | 711 | 759 | 805 |
900/10 | 773 | 840 | 871 |
1000/5 | 736 | 813 | 835 |
1000/10 | 745 | 807 | 855 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, A.; Lubas, M.; Jasinski, J.J.; Szumera, M.; Caban, R.; Iwaszko, J.; Koza, K. Effect of Dolomite Addition on the Structure and Properties of Multicomponent Amphibolite Glasses. Materials 2022, 15, 4870. https://doi.org/10.3390/ma15144870
Nowak A, Lubas M, Jasinski JJ, Szumera M, Caban R, Iwaszko J, Koza K. Effect of Dolomite Addition on the Structure and Properties of Multicomponent Amphibolite Glasses. Materials. 2022; 15(14):4870. https://doi.org/10.3390/ma15144870
Chicago/Turabian StyleNowak, Adrian, Malgorzata Lubas, Jaroslaw Jan Jasinski, Magdalena Szumera, Renata Caban, Jozef Iwaszko, and Kamila Koza. 2022. "Effect of Dolomite Addition on the Structure and Properties of Multicomponent Amphibolite Glasses" Materials 15, no. 14: 4870. https://doi.org/10.3390/ma15144870
APA StyleNowak, A., Lubas, M., Jasinski, J. J., Szumera, M., Caban, R., Iwaszko, J., & Koza, K. (2022). Effect of Dolomite Addition on the Structure and Properties of Multicomponent Amphibolite Glasses. Materials, 15(14), 4870. https://doi.org/10.3390/ma15144870