Sustainable Use of Waste Oyster Shell Powders in a Ternary Supplementary Cementitious Material System for Green Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mix Design and Specimens Preparation
2.3. Experimental Procedures
2.3.1. Compression Tests
2.3.2. Thermogravimetric Analysis (TGA)
2.3.3. Permeability Tests
- (1)
- Water absorption
- (2)
- Rapid chloride penetration test (RCPT)
2.3.4. Mercury Intrusion Porosimetry (MIP)
2.3.5. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Compressive Strength Analysis
3.2. Hydration Products Analysis
3.2.1. TGA
3.2.2. SEM Analyses
3.3. Permeability and Pore Structure Analysis
3.3.1. Water Absorption and Rapid Chloride Penetration Test (RCPT)
3.3.2. MIP Analysis and Pore Structure
4. Conclusions
- (1)
- There is a coupling effect between OSP, LS, and GGBFS. This coupling effect is based on the self-consistent secondary hydration reaction between calcium hydroxide produced by OSP hydration and LS and GGBFS. The activity index was higher when the substitution rate was 30%.
- (2)
- OSP-LS-GGBFS ternary SCMs system has low porosity and permeability was significantly improved. With the increase of SCMs replacement rate, permeability gradually deteriorated.
- (3)
- There is a weak transition zone between C-S-H gel produced by secondary hydration and C-S-H gel produced by cement hydration. The gel in this interval is discontinuous and has lots of pores.
- (4)
- OSP particles can be activated to provide CH while having good filling effect. Therefore, OSP is a good cement-assisted cementing material, but the single introduction of OSP will cause the problem of too high basicity. Therefore, the multi-cementing system containing OSP will be the direction of future research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tozer, L.; Klenk, N.L. Discourses of carbon neutrality and imaginaries of urban futures. Energy Res. Soc. Sci. 2018, 35, 174–181. [Google Scholar] [CrossRef]
- Lippiatt, N.; Ling, T.C.; Pan, S.Y. Towards carbon-neutral construction materials: Carbonation of cement-based materials and the future perspective. J. Build. Eng. 2019, 28, 101062. [Google Scholar] [CrossRef]
- Özalp, F.; Yılmaz, H.D.; Kara, M.; Kaya, Ö.; Şahin, A. Effects of recycled aggregates from construction and demolition wastes on mechanical and permeability properties of paving stone, kerb and concrete pipes. Constr. Build. Mater. 2016, 110, 17–23. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, Q. Inhibition mechanisms of steel slag on the early-age hydration of cement. Cem. Concr. Res. 2021, 140, 106283. [Google Scholar] [CrossRef]
- Yang, M.; Sun, J.; Dun, C.; Duan, Y.; Meng, Z. Cementitious activity optimization studies of iron tailings powder as a concrete admixture. Constr. Build. Mater. 2020, 265, 120760. [Google Scholar] [CrossRef]
- Raisi, E.M.; Amiri, J.V.; Davoodi, M.R. Mechanical performance of self-compacting concrete incorporating rice husk ash. Constr. Build. Mater. 2018, 177, 148–157. [Google Scholar] [CrossRef]
- Heriyanto; Pahlevani, F.; Sahajwalla, V. From waste glass to building materials—An innovative sustainable solution for waste glass. J. Clean. Prod. 2018, 191, 192–206. [Google Scholar] [CrossRef]
- Li, L.; Tu, G.-R.; Lan, C.; Liu, F. Mechanical characterization of waste-rubber-modified recycled-aggregate concrete. J. Clean. Prod. 2016, 124, 325–338. [Google Scholar] [CrossRef]
- Jokar, F.; Khorram, M.; Karimi, G.; Hataf, N. Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite. Constr. Build. Mater. 2019, 208, 651–658. [Google Scholar] [CrossRef]
- Chalangaran, N.; Farzampour, A.; Paslar, N. Nano silica and metakaolin effects on the behavior of concrete containing rubber crumbs. CivilEng 2020, 1, 17. [Google Scholar] [CrossRef]
- Marinković, S.; Dragaš, J.; Ignjatović, I.; Tošić, N. Environmental assessment of green concretes for structural use. J. Clean. Prod. 2017, 154, 633–649. [Google Scholar] [CrossRef]
- Her, S.; Park, T.; Zalnezhad, E.; Bae, S. Synthesis and characterization of cement clinker using recycled pulverized oyster and scallop shell as limestone substitutes. J. Clean. Prod. 2021, 278, 12398. [Google Scholar] [CrossRef]
- Zhan, J.; Lu, J.; Wang, D. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Rev. Aquac. 2021, 14, 477–488. [Google Scholar] [CrossRef]
- Sawai, J. Antimicrobial characteristics of heated scallop shell powder and its application. Biocontrol Sci. 2011, 16, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Magnabosco, G.; Giuri, D.; Di Bisceglie, A.P.; Scarpino, F.; Fermani, S.; Tomasini, C.; Falini, G. New material perspective for waste seashells by covalent functionalization. ACS Sustain. Chem. Eng. 2021, 9, 6203–6208. [Google Scholar] [CrossRef]
- Eziefula, U.; Ezeh, J.C.; Eziefula, B.I. Properties of seashell aggregate concrete: A review. Constr. Build. Mater. 2018, 192, 287–300. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.; Choudhary, N.; Gnanamoorthy, G.; Tirth, V.; Prasad, S.; Khan, A.H.; Islam, S.; Khan, N.A. The processing of calcium rich agricultural and industrial waste for recovery of calcium carbonate and calcium oxide and their application for environmental cleanup: A review. Appl. Sci. 2021, 11, 4212. [Google Scholar] [CrossRef]
- Soltanzadeh, F.; Emam-Jomeh, M.; Edalat-Behbahani, A.; Soltan-Zadeh, Z. Development and characterization of blended cements containing seashell powder. Constr. Build. Mater. 2018, 161, 292–304. [Google Scholar] [CrossRef]
- Naqi, A.; Siddique, S.; Kim, H.-K.; Jang, J.G. Examining the potential of calcined oyster shell waste as additive in high volume slag cement. Constr. Build. Mater. 2020, 230, 116973. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Bourguiba, A.; El Mendili, Y.; Sebaibi, N.; Boutouil, M. A preliminary investigation of a novel mortar based on alkali-activated seashell waste powder. Powder Technol. 2021, 389, 471–481. [Google Scholar] [CrossRef]
- Ez-Zaki, H.; Diouri, A. Chloride penetration through cement material based on dredged sediment and shell powder. J. Adhes. Sci. Technol. 2018, 32, 787–800. [Google Scholar] [CrossRef]
- Skibsted, J.; Snellings, R. Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 2019, 124, 105799. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Makul, N.; Siripattarapravat, C. Utilization of ground waste seashells in cement mortars for masonry and plastering. J. Environ. Manag. 2012, 111, 133–141. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Awad, M.M.; Alaskar, A.; Mohamed, A.M.; Alyousef, R. Durability and mechanical properties of seashell partially-replaced cement. J. Build. Eng. 2020, 31, 101328. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Yusuf, M.O. Properties of concrete containing recycled seashells as cement partial replacement, A review. J. Clean. Prod. 2019, 237, 117723. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Liu, B.; Zou, Z.; Teng, Y.; Ji, Y.; Zhou, Y.; Zhang, L.V.; Zhang, Y. Sustainable utilization of waste oyster shell powders with different fineness levels in a ternary supplementary cementitious material system. Sustainability 2022, 14, 5981. [Google Scholar] [CrossRef]
- Shariq, M.; Prasad, J.; Masood, A. Effect of GGBFS on time dependent compressive strength of concrete. Constr. Build. Mater. 2010, 24, 1469–1478. [Google Scholar] [CrossRef]
- He, Z.-H.; Du, S.-G.; Chen, D. Microstructure of ultra high performance concrete containing lithium slag. J. Hazard. Mater. 2018, 353, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Park, S.; Lee, K.; Park, J. Oyster shell as substitute for aggregate in mortar. Waste Manag. Res. 2004, 22, 158–170. [Google Scholar] [CrossRef]
- Li, G.; Xu, X.; Chen, E.; Fan, J.; Xiong, G. Properties of cement-based bricks with oyster-shells ash. J. Clean. Prod. 2015, 91, 279–287. [Google Scholar] [CrossRef]
- Chilakala, R.; Thannaree, C.; Shin, E.J.; Thenepalli, T.; Ahn, J.W. Sustainable solutions for oyster shell waste recycling in Thailand and the Philippines. Recycling 2019, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- GB/T 17671-1999; Method of Testing Cements—Determination of Strength. Standard Press of China: Beijing, China, 1999. (In Chinese)
- ASTM Standard C1202; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2009; p. 6.
- AASHTO T 277-831; Rapid Determination of the Chloride Permeability of Concrete; Standard Specifications—Part II Tests. American Association of States Highway and Transportation Officials: Washington, DC, USA, 1990.
- Washburn, E.W. Note on a method of determining the distribution of pore sizes in porous materials. Proc. Natl. Acad. Sci. USA 1921, 7, 115–116. [Google Scholar] [CrossRef] [Green Version]
- Long, W.J.; Xie, J.; Zhang, X.; Fang, Y.; Khayat, K.H. Hydration and microstructure of calcined hydrotalcite activated high-volume fly ash cementitious composite. Cem. Concr. Compos. 2021, 123, 104213. [Google Scholar] [CrossRef]
- Wang, T.; Ishida, T. Multiphase pozzolanic reaction model of low-calcium fly ash in cement systems. Cem. Concr. Res. 2019, 122, 274–287. [Google Scholar] [CrossRef]
- Shao, J.; Gao, J.; Zhao, Y.; Chen, X. Study on the pozzolanic reaction of clay brick powder in blended cement pastes. Constr. Build. Mater. 2019, 213, 209–215. [Google Scholar] [CrossRef]
- Wang, J.; Li, F.; Zhou, Z.; Du, P.; Xu, D.; Xie, N.; Cheng, X.; Liu, Y. Effect of zeolite on waste based alkali-activated inorganic binder efflorescence. Constr. Build. Mater. 2018, 158, 683–690. [Google Scholar] [CrossRef]
- Muthusamy, K.; Embong, R.; Jose, R.; Mohamad, N.; Bahrin NS, H.K. Compressive strength of mortar containing cockle shell waste as mixing ingredient. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1092, 133–141. [Google Scholar] [CrossRef]
- Ilić, B.; Radonjanin, V.; Malešev, M.; Zdujić, M.; Mitrović, A. Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Appl. Clay Sci. 2016, 123, 173–181. [Google Scholar] [CrossRef]
- Kakali, G.; Perraki, T.; Tsivilis, S.; Badogiannis, E. Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity. Appl. Clay Sci. 2001, 20, 73–80. [Google Scholar] [CrossRef]
- Ai, P.C. The Activation Process and Mechanism of Iron Tailings Powder and Its Influence on Concrete Performance. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2017. [Google Scholar]
- Cheng, Y.; Huang, F.; Li, W.; Liu, R.; Li, G.; Wei, J. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Constr. Build. Mater. 2016, 118, 164–170. [Google Scholar] [CrossRef]
- Gu, C.; Yao, J.; Yang, Y.; Huang, J.; Ma, L.; Ni, T.; Liu, J. The relationship of compressive strength and chemically bound water content of high-volume fly ash-cement mortar. Materials 2021, 14, 6273. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | CaO | SO3 | MgO | Fe2O3 | |
---|---|---|---|---|---|---|
OSP | 16.5% | 0.3% | 46.6% | 0.05% | 36.3% | 0.2% |
LS | 54.5% | 25.4% | 6.4% | 10.2% | 0.6% | 0.6% |
GGBFS | 30.7% | 15.9% | 42.3% | 1.8% | 6.7% | 1.2% |
Cement | 22.6% | 8.3% | 61.1% | 2.4% | 1.9% | 2.6% |
Materials | OSP | LS | GGBFS |
---|---|---|---|
Specific surface/m2 · kg−1 | 2057 | 13,627 | 1206 |
Serial Number | SCMs Replacement | Cement/g | OSP/g | LS/g | GGBFS/g | Standard Sand/g | Water/mL |
---|---|---|---|---|---|---|---|
M-1 | 20% | 360 | 90 | 0 | 0 | 1350 | 225 |
M-2 | 20% | 360 | 45 | 45 | 0 | 1350 | 225 |
M-3 | 20% | 360 | 45 | 0 | 45 | 1350 | 225 |
M-4 | 20% | 360 | 45 | 22.5 | 22.5 | 1350 | 225 |
Serial Number | SCMs Replacement | Cement/g | OSP/g | LS/g | GGBFS/g | Standard Sand/g | Water/mL |
---|---|---|---|---|---|---|---|
D-0 | 0 | 450 | 0 | 0 | 0 | 1350 | 225 |
D-10 | 10% | 405 | 22.5 | 11.3 | 11.3 | 1350 | 225 |
D-20 | 20% | 360 | 45 | 22.5 | 22.5 | 1350 | 225 |
D-30 | 30% | 315 | 67.5 | 33.8 | 33.8 | 1350 | 225 |
Chloride Permeability | Charge (Coulombs) |
---|---|
High | >4000 |
Moderate | 2000–4000 |
Low | 1000–2000 |
Very low | 100–1000 |
Serial Number | CH to Take Off the Water | Amount of CaCO3 Decomposition | C-S-H Decomposition Quantity | H2O Content | CH Content |
---|---|---|---|---|---|
D-0 | 3.6% | 1.4% | 13.3% | 17.3% | 18% |
D-10 | 2.8% | 3.2% | 13.7% | 17.4% | 18.8% |
D-20 | 3.7% | 3.8% | 13.5% | 18.5% | 23.9% |
D-30 | 5% | 3.8% | 13.2% | 19.5% | 29.2% |
M-1 | 7.3% | 5.3% | 12.5% | 21.3% | 42.1% |
M-2 | 5.2% | 4.3% | 14.5% | 20.9% | 31.2% |
M-3 | 6% | 4.9% | 13.5% | 20.9% | 35.8% |
Serial Number | Total Pore Volume (ml/g) | Maximum Aperture/μm | Pore Size Distribution | |||
---|---|---|---|---|---|---|
0–0.02 μm | 0.02–0.1 μm | 0.1–0.2 μm | >0.2 μm | |||
D-0 | 0.151 | 0.095 | 1.001 | 0.542 | 0.073 | 0.342 |
D-10 | 0.139 | 0.069 | 0.952 | 0.518 | 0.084 | 0.396 |
D-20 | 0.122 | 0.056 | 0.747 | 0.341 | 0.049 | 0.301 |
D-30 | 0.154 | 0.051 | 0.983 | 0.441 | 0.063 | 0.344 |
M-1 | 0.148 | 0.055 | 1.001 | 0.546 | 0.078 | 0.332 |
M-2 | 0.164 | 0.071 | 1.071 | 0.544 | 0.085 | 0.428 |
M-3 | 0.145 | 0.062 | 0.961 | 0.462 | 0.055 | 0.282 |
M-4 | 0.122 | 0.056 | 0.747 | 0.341 | 0.049 | 0.301 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhang, Y.; Liu, B.; Zou, Z.; Liu, Q.; Teng, Y.; Zhang, L.V. Sustainable Use of Waste Oyster Shell Powders in a Ternary Supplementary Cementitious Material System for Green Concrete. Materials 2022, 15, 4886. https://doi.org/10.3390/ma15144886
Liu S, Zhang Y, Liu B, Zou Z, Liu Q, Teng Y, Zhang LV. Sustainable Use of Waste Oyster Shell Powders in a Ternary Supplementary Cementitious Material System for Green Concrete. Materials. 2022; 15(14):4886. https://doi.org/10.3390/ma15144886
Chicago/Turabian StyleLiu, Shanglai, Yannian Zhang, Bonan Liu, Zhen Zou, Qiang Liu, Yina Teng, and Lei V. Zhang. 2022. "Sustainable Use of Waste Oyster Shell Powders in a Ternary Supplementary Cementitious Material System for Green Concrete" Materials 15, no. 14: 4886. https://doi.org/10.3390/ma15144886
APA StyleLiu, S., Zhang, Y., Liu, B., Zou, Z., Liu, Q., Teng, Y., & Zhang, L. V. (2022). Sustainable Use of Waste Oyster Shell Powders in a Ternary Supplementary Cementitious Material System for Green Concrete. Materials, 15(14), 4886. https://doi.org/10.3390/ma15144886