Experimental Investigation on Process Parameters during Laser-Assisted Turning of SiC Ceramics Based on Orthogonal Method and Response Surface Methodology
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Equipment and Materials
2.2. Experimental Principle
2.3. Experimental Design
2.3.1. Orthogonal Experiment
2.3.2. Response Surface Experiment
3. Results and Discussion
3.1. Orthogonal Experimental Results and Analysis
3.1.1. Analysis of Variance of Surface Roughness
3.1.2. Range Analysis of Surface Roughness
3.2. Response Surface Regression Model
3.2.1. Analysis of Variance of Regression Model
3.2.2. Interaction Analysis of Surface Roughness
3.3. Optimization and Validation
3.3.1. Process Parameter Optimization
3.3.2. Regression Model Validation
3.4. Discussion on Surface Morphology
4. Conclusions
- (1)
- According to the variance, range, and mean analysis, laser power and cutting depth are the dominant factors affecting surface roughness. The optimum parameters of the smallest surface roughness determined by the orthogonal method are laser power P 240 W, cutting depth ap 0.1 mm, rotational speed n 1500 r/min, and feed speed f 3 mm/min. The actual surface roughness Ra value is 0.315 μm under this parameter combination.
- (2)
- The regression model of surface roughness is established based on the RSM, and the results of variance analysis show that the model can explain 96% of the response value, with high reliability and accuracy, and statistical significance. The 3D surface and corresponding contour maps show that the interactions between laser power and cutting depth, laser power and feed speed, and cutting depth and rotational speed have a significant effect on surface roughness.
- (3)
- Based on the RSM, the optimal process parameters are obtained as follows: laser power P 240 W, cutting depth ap 0.11 mm, rotational speed n 1659 r/min, and feed speed f 3.5 mm/min. At this time, the predicted Ra value is 0.282 μm and the actual Ra value is 0.294 μm, with a maximum error of 4.1%, and the established regression model has high precision and can accurately predict the machining results of laser-assisted turning of SiC ceramics. The optimization results of the orthogonal method and RSM show that the optimized process parameters obtained by the RSM are used for the laser-assisted turning experiment, and the measured surface roughness Ra value is 0.294 μm, which is 6.67% lower than that of the orthogonal method. So the RSM can obtain the smallest surface roughness, and more feasibly.
- (4)
- The surface morphology analysis shows that compared with the traditional turning process, the machining effect of the laser-assisted turning process is better. Compared with orthogonal optimization, the surface roughness obtained by optimizing the process parameters of laser-assisted turning based on RSM is the smallest, there are no cracks and obvious defects on the surface, and the surface quality is significantly improved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Pan, G.; Shi, X.; Zhang, S.; Gong, H.; Luo, G. Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers. Tribol. Int. 2015, 87, 145–150. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Long, J.; Luo, H.; Zhou, Y.; Xie, X.; Pan, G. Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide Si-face. Appl. Surf. Sci. 2021, 536, 147963. [Google Scholar] [CrossRef]
- Khatir, F.A.; Sadeghi, M.H.; Akar, S. Investigation of surface integrity in the laser-assisted turning of AISI 4340 hardened steel. J. Manuf. Process. 2021, 61, 173–189. [Google Scholar] [CrossRef]
- Wei, C.; Guo, W.; Pratomo, E.S.; Li, Q.; Wang, D.; Whitehead, D.; Li, L. High speed, high power density laser-assisted machining of Al-SiC metal matrix composite with significant increase in productivity and surface quality. J. Mater. Process. Technol. 2020, 285, 116784. [Google Scholar] [CrossRef]
- Hu, Y.; Meng, J.; Hu, Z.; Zhou, H.; Luan, X.; Huang, B.; Wei, X. Machining characteristics of Ti6Al4V alloy turning assisted by laser heating and ultrasonic atomization. Appl. Opt. 2021, 60, 2583–2590. [Google Scholar] [CrossRef]
- Phillips, K.C.; Gandhi, H.H.; Mazur, E.; Sundaram, S.K. Ultrafast laser processing of materials: A review. Adv. Opt. Photonics 2015, 7, 684–712. [Google Scholar] [CrossRef]
- Han, J.; Malek, O.; Vleugels, J.; Braem, A.; Castagne, S. Ultrafast laser selective phase removal for surface modification of nanocomposite materials. Opt. Express 2021, 29, 24834–24845. [Google Scholar] [CrossRef]
- You, K.; Yan, G.; Luo, X.; Gilchrist, M.D.; Fang, F. Advances in laser assisted machining of hard and brittle materials. J. Manuf. Process. 2020, 58, 677–692. [Google Scholar] [CrossRef]
- König, W.; Cronjäger, L.; Spur, G.; Tönshoff, H.; Vigneau, M.; Zdeblick, W. Machining of New Materials. CIRP Ann. 1990, 39, 673–681. [Google Scholar] [CrossRef]
- Lei, S.; Shin, Y.C.; Incropera, F.P. Experimental Investigation of Thermo-Mechanical Characteristics in Laser-Assisted Machining of Silicon Nitride Ceramics. J. Manuf. Sci. Eng. 2001, 123, 639–646. [Google Scholar] [CrossRef]
- Bejjani, R.; Shi, B.; Attia, H.; Balazinski, M. Laser assisted turning of Titanium Metal Matrix Composite. CIRP Ann. 2011, 60, 61–64. [Google Scholar] [CrossRef]
- Zahrani, E.G.; Azarhoushang, B.; Wilde, J. Evaluation of chip breaking in combined laser-turning process. J. Manuf. Process. 2022, 77, 722–729. [Google Scholar] [CrossRef]
- Przestacki, D. Conventional and Laser Assisted Machining of Composite A359/20SiCp. Procedia CIRP 2014, 14, 229–233. [Google Scholar] [CrossRef] [Green Version]
- Dhupal, D.; Doloi, B.; Bhattacharyya, B. Pulsed Nd: YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3). Int. J. Mach. Tools Manuf. 2008, 48, 236–248. [Google Scholar] [CrossRef]
- Kalantari, O.; Jafarian, F.; Fallah, M.M. Comparative investigation of surface integrity in laser assisted and conventional ma-chining of Ti-6Al-4V alloy. J. Manuf. Process. 2021, 62, 90–98. [Google Scholar] [CrossRef]
- Chang, C.-W.; Kuo, C.-P. Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method. Int. J. Mach. Tools Manuf. 2007, 47, 141–147. [Google Scholar] [CrossRef]
- Venkatesan, K.; Ramanujam, R.; Kuppan, P. Analysis of Cutting Forces and Temperature in Laser Assisted Machining of Inconel 718 Using Taguchi Method. Procedia Eng. 2014, 97, 1637–1646. [Google Scholar] [CrossRef] [Green Version]
- Song, H.W.; Dan, J.Q.; Li, J.L.; Du, J.; Xiao, J.F.; Xu, J.F. Experimental study on the cutting force during laser-assisted machining of fused silica based on the Taguchi method and response surface methodology. J. Manuf. Process. 2019, 38, 9–20. [Google Scholar] [CrossRef]
- Zhai, C.; Xu, J.; Nie, X.; Tian, J.; Yu, H. Multiple nonlinear regression model of cutting force for C/SiC composites by laser-assisted micromachining. Int. J. Appl. Ceram. Technol. 2021, 18, 2273–2283. [Google Scholar] [CrossRef]
- Abedinzadeh, R.; Norouzi, E.; Toghraie, D. Study on machining characteristics of SiC–Al2O3 reinforced aluminum hybrid nanocomposite in conventional and laser-assisted turning. Ceram. Int. 2022; in press. [Google Scholar] [CrossRef]
- Li, Z.P.; Zhang, F.H.; Luo, X.C.; Chang, W.L.; Cai, Y.K.; Zhong, W.B.; Ding, F. Material removal mechanism of laser-assisted grinding of RB-SiC ceramics and process optimization. J. Eur. Ceram. Soc. 2019, 39, 705–717. [Google Scholar] [CrossRef]
- Shanmugam, D.; Chen, F.; Siores, E.; Brandt, M. Comparative study of jetting machining technologies over laser machining technology for cutting composite materials. Compos. Struct. 2002, 57, 289–296. [Google Scholar] [CrossRef]
- Liu, J.; Lu, J.; Ni, X.W.; Dai, G.; Zhang, L. Thermal stress cleaving of silicon wafer by pulsed Nd: YAG laser. Chin. Opt. Lett. 2010, 8, 1000–1003. [Google Scholar]
- Patel, V.D.; Gandhi, A.H. Analysis and modeling of surface roughness based on cutting parameters and tool nose radius in turning of AISI D2 steel using CBN tool. Measurement 2019, 138, 34–38. [Google Scholar] [CrossRef]
- Godoy, V.A.; Diniz, A.E. Turning of interrupted and continuous hardened steel surfaces using ceramic and CBN cutting tools. J. Mater. Process. Technol. 2011, 211, 1014–1025. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.; Sharma, A.; Modi, Y.K. Optimization of process parameters during laser cutting of Ni-based superalloy thin sheet using response surface methodology. Mater. Today Proc. 2018, 5, 24231–24239. [Google Scholar] [CrossRef]
- Pinheiro, D.R.; Neves, R.D.F.; Paz, S.P. A sequential box-behnken design (BBD) and response surface methodology (RSM) to optimize SAPO-34 synthesis from kaolin waste. Microporous Mesoporous Mater. 2021, 323, 111250. [Google Scholar] [CrossRef]
- Feng, G.; Lei, S.; Guo, Y.; Shi, D.; Shen, J.B. Optimisation of air-distributor channel structural parameters based on Taguchi or-thogonal design. Case Stud. Therm. Eng. 2020, 21, 100685. [Google Scholar] [CrossRef]
- Cui, Z.; Ni, J.; He, L.; Guan, L.; Han, L.; Sun, J. Investigation of chip formation, cutting force and surface roughness during orthogonal cutting of polytetrafluoroethylene. J. Manuf. Process. 2022, 77, 485–494. [Google Scholar] [CrossRef]
- Qasim, A.; Nisar, S.; Shah, A.; Khalid, M.S.; Sheikh, M.A. Optimization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA. Simul. Model. Pract. Theory 2015, 59, 36–51. [Google Scholar] [CrossRef]
Density (g/cm3) | Hardness (HV) | Specific Heat Capacity (J/kg·K) | Thermal Conductivity (W/m·K) | Coefficient Thermal Expansion (°C) | Bending Strength (MPa) |
---|---|---|---|---|---|
3.15 | 2100 | 1100 | 80 | 4.5 × 10−6 | 400 |
Parameters | Unit | Levels of Factors | ||
---|---|---|---|---|
Level 1 | Level 2 | Level 3 | ||
Laser power (P) | W | 210 | 225 | 240 |
Cutting depth (ap) | mm | 0.10 | 0.15 | 0.20 |
Rotational speed (n) | r/min | 1500 | 1620 | 1740 |
Feed speed (f) | mm/min | 2 | 3 | 4 |
Parameters | Notation | Unit | Levels of Factors | ||
---|---|---|---|---|---|
−1 | 0 | +1 | |||
Laser power (P) | A | W | 210 | 225 | 240 |
Cutting depth (ap) | B | mm | 0.10 | 0.15 | 0.20 |
Rotational speed (n) | C | r/min | 1500 | 1620 | 1740 |
Feed speed (f) | D | mm/min | 2 | 3 | 4 |
Value | Laser Power P/(W) | Cutting Depth ap/(mm) | Rotational Speed n/(r/min) | Feed Speed f/(mm/min) | Surface Roughness Ra/(μm) |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 0.417 |
2 | 1 | 2 | 2 | 2 | 0.546 |
3 | 1 | 3 | 3 | 3 | 0.765 |
4 | 2 | 2 | 1 | 3 | 0.374 |
5 | 2 | 3 | 2 | 1 | 0.682 |
6 | 2 | 1 | 3 | 2 | 0.337 |
7 | 3 | 3 | 1 | 2 | 0.538 |
8 | 3 | 1 | 2 | 3 | 0.321 |
9 | 3 | 2 | 3 | 1 | 0.375 |
Source | Degree-of-Freedom (DF) | Sum-of-Squares (SS) | Mean-of-Squares (MS) | F-Value |
---|---|---|---|---|
Laser Power (P) | 2 | 0.042394 | 0.021197 | 84.30 |
Cutting depth (ap) | 2 | 0.150289 | 0.075144 | 298.85 |
Rotational speed (n) | 2 | 0.008388 | 0.004194 | 16.68 |
Error | 2 | 0.201573 | ||
Total | 8 |
Value | Laser Power P/(W) | Cutting Depth ap/(mm) | Rotational Speed n/(r/min) | Feed Speed f/(mm/min) |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 2 | 2 | 1 | 3 |
5 | 2 | 3 | 2 | 1 |
6 | 2 | 1 | 3 | 2 |
7 | 3 | 3 | 1 | 2 |
8 | 3 | 1 | 2 | 3 |
9 | 3 | 2 | 3 | 1 |
K1 | 0.5760 | 0.3583 | 0.4430 | 0.4913 |
K2 | 0.4643 | 0.4317 | 0.5163 | 0.4737 |
K3 | 0.4113 | 0.6617 | 0.4923 | 0.4867 |
R | 0.1647 | 0.3033 | 0.0733 | 0.0177 |
Order | Cutting depth > Laser power > Rotational speed > Feed speed |
Value | Laser Power P/(W) | Cutting Depth ap/(mm) | Rotational Speed n/(r/min) | Feed Speed f/(mm/min) | Surface Roughness Ra/(μm) |
---|---|---|---|---|---|
1 | 0 | 0 | −1 | 1 | 0.395 |
2 | 1 | 0 | 0 | −1 | 0.361 |
3 | 0 | 0 | 0 | 0 | 0.405 |
4 | 0 | 1 | 1 | 0 | 0.719 |
5 | −1 | −1 | 0 | 0 | 0.451 |
6 | 1 | 1 | 0 | 0 | 0.523 |
7 | −1 | 0 | 0 | −1 | 0.523 |
8 | −1 | 0 | −1 | 0 | 0.515 |
9 | 0 | −1 | 0 | 1 | 0.352 |
10 | 0 | 0 | 0 | 0 | 0.410 |
11 | 0 | 1 | −1 | 0 | 0.645 |
12 | 1 | 0 | −1 | 0 | 0.365 |
13 | 0 | −1 | 0 | −1 | 0.360 |
14 | 0 | 0 | 0 | 0 | 0.395 |
15 | 0 | 0 | −1 | −1 | 0.384 |
16 | 0 | −1 | 1 | 0 | 0.337 |
17 | 0 | 0 | 1 | −1 | 0.449 |
18 | 1 | −1 | 0 | 0 | 0.312 |
19 | −1 | 0 | 1 | 0 | 0.538 |
20 | −1 | 0 | 0 | 1 | 0.530 |
21 | 0 | 0 | 1 | 1 | 0.463 |
22 | 1 | 0 | 1 | 0 | 0.345 |
23 | −1 | 1 | 0 | 0 | 0.751 |
24 | 0 | 1 | 0 | −1 | 0.689 |
25 | 1 | 0 | 0 | 1 | 0.323 |
26 | 0 | −1 | −1 | 0 | 0.346 |
27 | 0 | 1 | 0 | 1 | 0.668 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 0.4379 | 14 | 0.0313 | 49.85 | <0.0001 | Significant |
A-Laser power | 0.0970 | 1 | 0.0970 | 154.61 | <0.0001 | |
B-Cutting depth | 0.2812 | 1 | 0.2812 | 448.15 | <0.0001 | |
C-Rotational speed | 0.0034 | 1 | 0.0034 | 5.37 | 0.0390 | |
D-Feed speed | 0.0001 | 1 | 0.0001 | 0.1627 | 0.6938 | |
AB | 0.0020 | 1 | 0.0020 | 3.16 | 0.1010 | |
AC | 0.0005 | 1 | 0.0005 | 0.7367 | 0.4076 | |
AD | 0.0005 | 1 | 0.0005 | 0.8068 | 0.3867 | |
BC | 0.0017 | 1 | 0.0017 | 2.74 | 0.1235 | |
BD | 0.0000 | 1 | 0.0000 | 0.0673 | 0.7997 | |
CD | 2.250 × 10−6 | 1 | 2.250 × 10−6 | 0.0036 | 0.9532 | |
A2 | 0.0017 | 1 | 0.0017 | 2.69 | 0.1269 | |
B2 | 0.0479 | 1 | 0.0479 | 76.37 | <0.0001 | |
C2 | 0.0009 | 1 | 0.0009 | 1.50 | 0.2439 | |
D2 | 0.0009 | 1 | 0.0009 | 1.39 | 0.2611 | |
Residual | 0.0075 | 12 | 0.0006 | |||
Lack of fit | 0.0074 | 10 | 0.0007 | 12.71 | 0.0751 | Not significant |
Pure error | 0.0001 | 2 | 0.0001 | |||
Cor total | 0.4454 | 26 | ||||
R2 = 0.9831 | R2adj = 0.9634 |
Case 1 | Case 2 | Case 3 | Mean Value | Predicted | Error |
---|---|---|---|---|---|
0.293 μm | 0.291 μm | 0.297 μm | 0.294 μm | 0.282 μm | 4.1/% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Zhao, Y.; Cao, C.; Dong, R.; Zhang, H.; Liu, Q.; Song, Z.; Zhang, X.; Zheng, Z.; Zhao, C. Experimental Investigation on Process Parameters during Laser-Assisted Turning of SiC Ceramics Based on Orthogonal Method and Response Surface Methodology. Materials 2022, 15, 4889. https://doi.org/10.3390/ma15144889
Dai D, Zhao Y, Cao C, Dong R, Zhang H, Liu Q, Song Z, Zhang X, Zheng Z, Zhao C. Experimental Investigation on Process Parameters during Laser-Assisted Turning of SiC Ceramics Based on Orthogonal Method and Response Surface Methodology. Materials. 2022; 15(14):4889. https://doi.org/10.3390/ma15144889
Chicago/Turabian StyleDai, Di, Yugang Zhao, Chen Cao, Ruichun Dong, Haiyun Zhang, Qian Liu, Zhuang Song, Xiajunyu Zhang, Zhilong Zheng, and Chuang Zhao. 2022. "Experimental Investigation on Process Parameters during Laser-Assisted Turning of SiC Ceramics Based on Orthogonal Method and Response Surface Methodology" Materials 15, no. 14: 4889. https://doi.org/10.3390/ma15144889
APA StyleDai, D., Zhao, Y., Cao, C., Dong, R., Zhang, H., Liu, Q., Song, Z., Zhang, X., Zheng, Z., & Zhao, C. (2022). Experimental Investigation on Process Parameters during Laser-Assisted Turning of SiC Ceramics Based on Orthogonal Method and Response Surface Methodology. Materials, 15(14), 4889. https://doi.org/10.3390/ma15144889