Fabrication and Characterization of a Composite Ni-SDC Fuel Cell Cathode Reinforced by Ni Foam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Slurries Preparation
2.3. Cathode Preparation
2.4. Characterization of the Cathodes
3. Results and Discussion
3.1. Characterization of Substrates
3.2. Optimization of the Manufacturing Process of the Ni-SDC Cathode’s Aqueous Suspension
3.3. Porosity Measurements
3.4. SEM Observation before and after Sintering
3.5. Specific Surface Area and Porosity
3.6. XRD Measurement of Cathodes after Sintering in Forming Gas
3.7. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Watanabe, T.; Izaki, Y.; Mugikura, Y.; Morita, H.; Yoshikawa, M.; Kawase, M.; Yoshiba, F.; Asano, K. Applicability of molten carbonate fuel cells to various fuels. J. Power Sources 2006, 160, 868–871. [Google Scholar] [CrossRef]
- Dicks, A.; Siddle, A. Assessment of commercial prospects of molten carbonate fuel cells. J. Power Source 2000, 86, 316–323. [Google Scholar] [CrossRef]
- Dicks, A.L. Molten carbonate fuel cells. Curr. Opin. Solid State Mater. Sci. 2004, 8, 379–383. [Google Scholar] [CrossRef]
- Jacobson, A.J. Materials for solid oxide fuel cells. Chem. Mater. 2010, 22, 660–674. [Google Scholar] [CrossRef]
- Orera, A.; Slater, P.R. New chemical systems for solid oxide fuel cells. Chem. Mater. 2010, 22, 675–690. [Google Scholar] [CrossRef]
- Huijsmans, J.P.P.; Van Berkel, F.P.F.; Christie, G.M. Intermediate temperature SOFC—A promise for the 21st century. J. Power Source 1998, 71, 107–110. [Google Scholar] [CrossRef]
- Shi, H.; Su, C.; Ran, R.; Cao, J.; Shao, Z. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog. Nat. Sci. 2020, 30, 764–774. [Google Scholar] [CrossRef]
- Mogensen, M.; Sammes, N.M.; Tompsett, G.A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 2000, 129, 63–94. [Google Scholar] [CrossRef]
- Keung, W.-M. Isolation and Characterization of Three Alcohol Dehydrogenase Isozymes from Syrian Golden Hamsters. Alcohol. Clin. Exp. Res. 1996, 20, 213–220. [Google Scholar] [CrossRef]
- Riess, I. Mixed ionic–electronic conductors—material properties and applications. Solid State Ion. 2003, 157, 1–17. [Google Scholar] [CrossRef]
- Lee, Y.H.; Chang, I.; Cho, G.Y.; Park, J.; Yu, W.; Tanveer, W.H.; Cha, S.W. Thin Film Solid Oxide Fuel Cells Operating Below 600 °C: A Review. Int. J. Precis. Eng. Manuf. Technol. 2018, 5, 441–453. [Google Scholar] [CrossRef]
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 2015, 72, 141–337. [Google Scholar] [CrossRef]
- Menzler, N.H.; Tietz, F.; Uhlenbruck, S.; Buchkremer, H.P.; Stöver, D. Materials and manufacturing technologies for solid oxide fuel cells. J. Mater. Sci. 2010, 45, 3109–3135. [Google Scholar] [CrossRef]
- Czelej, K.; Cwieka, K.; Colmenares, J.C.; Kurzydlowski, K.J. Atomistic insight into the electrode reaction mechanism of the cathode in molten carbonate fuel cells. J. Mater. Chem. A 2017, 5, 13763–13768. [Google Scholar] [CrossRef]
- Daza, L.; Rangel, C.; Baranda, J.; Casais, M.; Martínez, M.; Alonso, J. Modified nickel oxides as cathode materials for MCFC. J. Power Source 2000, 86, 329–333. [Google Scholar] [CrossRef]
- Fang, B.; Zhou, C.; Liu, X.; Duan, S. Performance of a novel Ni/Nb cathode material for molten carbonate fuel cells (MCFC). J. Appl. Electrochem. 2001, 31, 201–205. [Google Scholar] [CrossRef]
- Escudero, M.; Rodrigo, T.; Daza, L. Molten carbonate fuel cell cathodes: Improvement of the electrocatalytic activity. Catal. Today 2005, 107–108, 377–387. [Google Scholar] [CrossRef]
- Czelej, K.; Ćwieka, K.; Wejrzanowski, T.; Spiewak, P.; Kurzydlowski, K. Decomposition of activated CO2 species on Ni(110): Role of surface diffusion in the reaction mechanism. Catal. Commun. 2016, 74, 65–70. [Google Scholar] [CrossRef]
- Wejrzanowski, T.; Gluch, J.; Ibrahim, S.H.; Ćwieka, K.; Milewski, J.; Zschech, E. Characterization of Spatial Distribution of Electrolyte in Molten Carbonate Fuel Cell Cathodes. Adv. Eng. Mater. 2018, 20, 1700909. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Ahmad, S.H.; Chen, R.S.; Ismail, A.F.; Hazan, R.; Baharuddin, N.A. Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application. Int. J. Hydrogen Energy 2022, 47, 1103–1120. [Google Scholar] [CrossRef]
- Khan, I.; Tiwari, P.K.; Basu, S. Analysis of gadolinium-doped ceria-ternary carbonate composite electrolytes for solid oxide fuel cells. Ionics 2018, 24, 211–219. [Google Scholar] [CrossRef]
- Xia, C.; Li, Y.; Tian, Y.; Liu, Q.; Wang, Z.; Jia, L.; Zhao, Y.; Li, Y. Intermediate temperature fuel cell with a doped ceria–carbonate composite electrolyte. J. Power Source 2010, 195, 3149–3154. [Google Scholar] [CrossRef]
- Choi, H.-J.; Lee, J.-J.; Hyun, S.-H.; Lim, H.-C. Fabrication and performance evaluation of electrolyte-combined α-LiAlO2 matrices for molten carbonate fuel cells. Int. J. Hydrogen Energy 2011, 36, 11048–11055. [Google Scholar] [CrossRef]
- Zhang, L.; Lan, R.; Kraft, A.; Tao, S. A stable intermediate temperature fuel cell based on doped-ceria–carbonate composite electrolyte and perovskite cathode. Electrochem. Commun. 2011, 13, 582–585. [Google Scholar] [CrossRef]
- López-Robledo, M.; Silva-Treviño, J.; Molina, T.; Moreno, R. Colloidal stability of gadolinium-doped ceria powder in aqueous and non-aqueous media. J. Eur. Ceram. Soc. 2013, 33, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Wejrzanowski, T.; Cwieka, K.; Skibinski, J.; Brynk, T.; Ibrahim, S.H.; Milewski, J.; Xing, W. Metallic foam supported electrodes for molten carbonate fuel cells. Mater. Des. 2020, 193, 108864. [Google Scholar] [CrossRef]
- Lysik, A.; Cwieka, K.; Wejrzanowski, T.; Skibinski, J.; Milewski, J.; Marques, F.M.; Norby, T.; Xing, W. Silver coated cathode for molten carbonate fuel cells. Int. J. Hydrogen Energy 2020, 45, 19847–19857. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Wejrzanowski, T.; Cwieka, K.; Skibinski, J.; Lysik, A.; Ibrahim, S.H.; Milewski, J.; Xing, W.; Lee, C.-G. Microstructure driven design of porous electrodes for molten carbonate fuel cell application: Recent progress. Int. J. Hydrogen Energy 2020, 45, 25719–25732. [Google Scholar] [CrossRef]
- Wejrzanowski, T.; Ibrahim, S.H.; Cwieka, K.; Loeffler, M.; Milewski, J.; Zschech, E.; Lee, C.-G. Multi-modal porous microstructure for high temperature fuel cell application. J. Power Source 2018, 373, 85–94. [Google Scholar] [CrossRef]
- Ćwieka, K.; Lysik, A.; Wejrzanowski, T.; Norby, T.; Xing, W. Microstructure and electrochemical behavior of layered cathodes for molten carbonate fuel cell. J. Power Source 2021, 500, 229949. [Google Scholar] [CrossRef]
- Zhang, X.; Decès-Petit, C.; Yick, S.; Robertson, M.; Kesler, O.; Maric, R.; Ghosh, D. A study on sintering aids for Sm0.2Ce0.8O1.9 electrolyte. J. Power Source 2006, 162, 480–485. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Wang, S.; Romito, K.G.; Huang, K. High conductivity mixed oxide-ion and carbonate-ion conductors supported by a prefabricated porous solid-oxide matrix. Electrochem. Commun. 2011, 13, 554–557. [Google Scholar] [CrossRef]
- Wandekar, R.V.; Basu, M.A.; Wani, B.N.; Bharadwaj, S.R. Physicochemical studies of NiO–GDC composites. Mater. Chem. Phys. 2006, 99, 289–294. [Google Scholar] [CrossRef]
- Chavan, A.; Jadhav, L.; Jamale, A.; Patil, S.; Bhosale, C.; Bharadwaj, S.; Patil, P. Effect of variation of NiO on properties of NiO/GDC (gadolinium doped ceria) nano-composites. Ceram. Int. 2012, 38, 3191–3196. [Google Scholar] [CrossRef]
Ni | Ni_SDC20 | Ni_SDC40 | Ni_SDC50 | Ni_SDC60 | |
---|---|---|---|---|---|
Average cathode thickness after drying (mm) | 0.66 ± 0.02 | 0.67 ± 0.04 | 0.59 ± 0.01 | 0.67 ± 0.01 | 0.62 ± 0.01 |
Average cathode thickness after sintering (mm) | 0.60 ± 0.02 | 0.65 ± 0.01 | 0.57 ± 0.01 | 0.65 ± 0.01 | 0.59 ± 0.01 |
Sample | SBET (m2/g) | Sexternal (m2/g) | Smicropore (m2/g) | Vpore (×10−3) (cm3/g) | Dpore (nm) |
---|---|---|---|---|---|
Ni | 0.463 | 0.226 | 0.237 | 0.72 | 3.0 |
Ni_SDC20 | 2.384 | 2.384 | 0.0 | 6.38 | 3.4 |
Ni_SDC50 | 4.568 | 4.568 | 0.0 | 12.50 | 5.4 |
Ni_SDC60 | 2260 | 2260 | 0.0 | 7.47 | 3.7 |
Ce0.8Sm0.2O1.9 | Ni | |||
---|---|---|---|---|
Nominal SDC Fraction (%) | a Lattice (Å) | Crystallite Size (nm) | Calculated Volume Fraction (%) | a Lattice (Å) |
0 | - | - | - | 3.52555 (1) |
20 | 5.45852 (4) | 144 (10) | 20.3 (2) | 3.52395 (1) |
40 | 5.45853 (4) | 84 (3) | 37.1 (4) | 3.52450 (1) |
50 | 5.45852 (4) | 106 (3) | 47.0 (5) | 3.52425 (1) |
60 | 5.45945 (4) | 96 (2) | 56.9 (5) | 3.52423 (1) |
100 | 5.45816 (3) | 225 (12) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komorowska, G.; Wejrzanowski, T.; Jamroz, J.; Jastrzębska, A.; Wróbel, W.; Tsai, S.-Y.; Fung, K.-Z. Fabrication and Characterization of a Composite Ni-SDC Fuel Cell Cathode Reinforced by Ni Foam. Materials 2022, 15, 4891. https://doi.org/10.3390/ma15144891
Komorowska G, Wejrzanowski T, Jamroz J, Jastrzębska A, Wróbel W, Tsai S-Y, Fung K-Z. Fabrication and Characterization of a Composite Ni-SDC Fuel Cell Cathode Reinforced by Ni Foam. Materials. 2022; 15(14):4891. https://doi.org/10.3390/ma15144891
Chicago/Turabian StyleKomorowska, Gabriela, Tomasz Wejrzanowski, Jan Jamroz, Agnieszka Jastrzębska, Wojciech Wróbel, Shu-Yi Tsai, and Kuan-Zong Fung. 2022. "Fabrication and Characterization of a Composite Ni-SDC Fuel Cell Cathode Reinforced by Ni Foam" Materials 15, no. 14: 4891. https://doi.org/10.3390/ma15144891
APA StyleKomorowska, G., Wejrzanowski, T., Jamroz, J., Jastrzębska, A., Wróbel, W., Tsai, S. -Y., & Fung, K. -Z. (2022). Fabrication and Characterization of a Composite Ni-SDC Fuel Cell Cathode Reinforced by Ni Foam. Materials, 15(14), 4891. https://doi.org/10.3390/ma15144891