Emulsion Explosives: A Tutorial Review and Highlight of Recent Progress
Abstract
:1. Introduction
2. Stability of EE Matrices
3. Approaches to Sensitising EEs
3.1. Physical Sensitising
3.2. Chemical Sensitising
4. Additives to EEs
5. Energetic Properties of EEs
5.1. Velocity of Detonation
5.2. Post-Detonation Gases
6. Applications of EEs
Safety Considerations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Egly, R.S.; Neckar, A.E. Ammonium Nitrate-Containing Emulsion Sensitizers for Blasting Agents. U.S. Patent 3,161,551, 15 December 1964. [Google Scholar]
- Bluhm, H.F. Ammonium Nitrate Emulsion Blasting Agent and Method of Preparing Same. U.S. Patent 3,447,978, 3 June 1969. [Google Scholar]
- Tag, A.; Petterson, B.R.; Nygaard, E.C. Emulsion explosive. U.S. Patent 4,500,369, 19 February 1985. [Google Scholar]
- Yates, D.E.; Dack, S.W. Emulsion Explosive Composition. U.S. Patent 4,710,248, 12 December 1987. [Google Scholar]
- Chattopadhyay, A.K. Emulsion Explosive. U.S. Patent 5,500,062, 19 March 1996. [Google Scholar]
- Hattori, K.; Fukatsu, Y.; Takahashi, M. Water-in-oil Emulsion Explosive Composition. U.S. Patent 4,326,900, 27 April 1982. [Google Scholar]
- Nations, U. European Agreement Concerning the International Carriage of Dangerous Goods By Road (Adr). 2021. Available online: https://unece.org/transportdangerous-goods/adr-2021-files (accessed on 1 July 2022).
- Kramarczyk, B.; Pytlik, M.; Mertuszka, P. Effect of aluminium additives on selected detonation parameters of a bulk emulsion explosive. Materiały Wysokoenergetyczne 2020, 12, 99–113. [Google Scholar] [CrossRef]
- Zhao, H.R.; Wu, J.; Xu, M.X.; Zhang, K.M. Advances in the rheology of emulsion explosive. J. Mol. Liq. 2021, 336, 116854. [Google Scholar] [CrossRef]
- Nour, A.H. Emulsion types, stability mechanisms and rheology: A review. Int. J. Innov. Res. Sci. Stud. (IJIRSS) 2018, 1, 14–21. [Google Scholar]
- Ravera, F.; Dziza, K.; Santini, E.; Cristofolini, L.; Liggieri, L. Emulsification and emulsion stability: The role of the interfacial properties. Adv. Colloid Interface Sci. 2021, 288, 102344. [Google Scholar] [CrossRef]
- Masalova, I.; Malkin, A.Y.; Ferg, E.; Kharatiyan, E.; Taylor, M.; Haldenwang, R. Evolution of rheological properties of highly concentrated emulsions with aging—Emulsion-to-suspension transition. J. Rheol. 2006, 50, 435–451. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.G. Crystallization of interphase droplets in emulsion explosive matrices. J. Dispers. Sci. Technol. 2017, 38, 1483–1488. [Google Scholar] [CrossRef]
- Al-Sabagh, A.; Hussien, M.A.; Mishrif, M.R.; El-Tabey, A.E.; Elawady, A.A. Preparation and investigation of emulsion explosive matrix based on gas oil for mining process. J. Mol. Liq. 2017, 238, 198–207. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Gong, M.; Zhao, M. The effect of surfactant on the rheology and stability properties of emulsion explosive matrices. J. Dispers. Sci. Technol. 2021, 1–9. [Google Scholar] [CrossRef]
- Hirosaki, Y.; Murata, K.; Kato, Y.; Itoh, S. Detonation characteristics of emulsion explosive as function of void size and volume. In Proceedings of the 12th International Detonation Symposium, San Diego, CA, USA, 11–16 August 2002. [Google Scholar]
- Van Ommeren, C.L. Emulsion Explosive Composition Containing Expanded Perlite. U.S. Patent 4,940,497, 10 July 1990. [Google Scholar]
- Yunoshev, A.; Sil’Vestrov, V.; Plastinin, A.; Rafeichik, S. Influence of artificial pores on the detonation parameters of an emulsion explosive. Combust. Explos. Shock Waves 2017, 53, 205–210. [Google Scholar] [CrossRef]
- Mendes, R.; Ribeiro, J.; Plaksin, I.; Campos, J.; Tavares, B. Differences between the detonation behavior of emulsion explosives sensitized with glass or with polymeric micro-balloons. J. Phys. Conf. Ser. 2014, 500, 052030. [Google Scholar] [CrossRef]
- Anshits, A.; Anshits, N.; Deribas, A.; Karakhanov, S.; Kasatkina, N.; Plastinin, A.; Reshetnyak, A.Y.; Sil’vestrov, V. Detonation velocity of emulsion explosives containing cenospheres. Combust. Explos. Shock Waves 2005, 41, 591–598. [Google Scholar] [CrossRef]
- Kramarczyk, B.; Mertuszka, P. Study of Influence of Sensitizer Content on Density of Bulk Emulsion Explosive Used in Underground Operations. Cent. Eur. J. Energetic Mater. 2021, 18, 429–447. [Google Scholar]
- da Silva, G.; Dlugogorski, B.Z.; Kennedy, E.M. Water-in-oil emulsion foaming by thiourea nitrosation: Reaction and mass transfer. AIChE J. 2006, 52, 1558–1565. [Google Scholar] [CrossRef]
- Cranney, D.H.; Hansen, J.R. Gassed Emulsion Explosive. U.S. Patent 6,022,428, 8 February 2000. [Google Scholar]
- Cordova, P.F.P.; Lopez, L.A.C. Low Density Explosive Emulsion. U.S. Patent 8,187,397, 29 May 2012. [Google Scholar]
- Pienaar, A.; Yakhoub, H.; Kennedy, E.; Dlugogorski, B. Emulsion Explosive Sensitising. U.S. Patent App. 14/003,450, 3 April 2014. [Google Scholar]
- Peyrot, L.; Duriche, C.; Elkhatib, M.; Delalu, H. Elaboration of high-grade chloramine from ternary and quaternary ammoniacal combinations and hypochlorite at 100 chlorometric degrees. J. Chem. Res. Synopses 1999, 6, 358–359. [Google Scholar]
- Venpin, W.K.; Kennedy, E.M.; Mackie, J.C.; Dlugogorski, B.Z. Trapping of nitric oxide, generated during sensitization of ammonium nitrate emulsion explosive, by aromatic nitroso sulfonates. Ind. Eng. Chem. Res. 2013, 52, 10561–10568. [Google Scholar] [CrossRef]
- Maranda, A.; Paszula, J.; Zawadzka-Małota, I.; Kuczyńska, B.; Witkowski, W.; Nikolczuk, K.; Wilk, Z. Aluminum powder infuence on ANFO detonation parameters. Cent. Eur. J. Energetic Mater. 2011, 8, 279–292. [Google Scholar]
- Yue, G.; He, J.; Wang, X.G.; Yan, S.L.; Cheng, Y.F. Influence of Titanium Powder on Detonation Performances and Thermal Decomposition Characteristics of Emulsion Explosive. Chin. J. Energetic Mater. 2017, 25, 304–308. [Google Scholar]
- Wang, Y.; Ma, H.; Shen, Z.; Wang, B.; Xue, B.; Ren, L. Detonation characteristics of emulsion explosives sensitized by hydrogen-storage glass microballoons. Propellants Explos. Pyrotech. 2018, 43, 939–947. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Meng, X.R.; Feng, C.T.; Wang, Q.; Wu, S.S.; Ma, H.H.; Shen, Z.W. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives. Propellants Explos. Pyrotech. 2017, 42, 585–591. [Google Scholar] [CrossRef]
- Kramarczyk, B.; Pytlik, M.; Mertuszka, P.; Jaszcz, K.; Jarosz, T. Novel Sensitizing Agent Formulation for Bulk Emulsion Explosives with Improved Energetic Parameters. Materials 2022, 15, 900. [Google Scholar] [CrossRef]
- Mishra, A.K.; Rout, M.; Singh, D.R.; Jana, S.P. Influence of gassing agent and density on detonation velocity of bulk emulsion explosives. Geotech. Geol. Eng. 2018, 36, 89–94. [Google Scholar] [CrossRef]
- Mertuszka, P.; Fuławka, K.; Pytlik, M.; Szastok, M. The influence of temperature on the detonation velocity of selected emulsion explosives. J. Energetic Mater. 2020, 38, 336–347. [Google Scholar] [CrossRef]
- Mertuszka, P.; Fuławka, K.; Pytlik, M.; Wincenciak, J.; Wawryszewicz, A. The influence of time on the density and detonation velocity of bulk emulsion explosives–A case study from Polish copper mines. Cent. Eur. J. Energetic Mater. 2019, 16, 245–258. [Google Scholar] [CrossRef]
- Pradhan, M. Sleep time: Its consequences on performance of bulk emulsion explosive. J. Sci. Ind. Res. 2010, 69, 125–128. [Google Scholar]
- Mertuszka, P.; Kramarczyk, B. The impact of time on the detonation capacity of bulk emulsion explosives based on Emulinit 8L. Propellants Explos. Pyrotech. 2018, 43, 799–804. [Google Scholar] [CrossRef]
- Agrawal, H.; Mishra, A.K. A study on influence of density and viscosity of emulsion explosive on its detonation velocity. Model Meas. Control C 2018, 78, 316–336. [Google Scholar] [CrossRef]
- Balakrishnan, V.; Pradhan, M.; Dhekne, P. Field investigation in the detonation behavior of emulsion explosive column induced with air gaps. Min. Sci. 2019, 26, 55–68. [Google Scholar] [CrossRef]
- Sil’vestrov, V.; Plastinin, A.; Karakhanov, S.; Zykov, V. Critical diameter and critical thickness of an emulsion explosive. Combust. Explos. Shock Waves 2008, 44, 354–359. [Google Scholar] [CrossRef]
- Mertuszka, P.; Cenian, B.; Kramarczyk, B.; Pytel, W. Influence of explosive charge diameter on the detonation velocity based on Emulinit 7L and 8L bulk emulsion explosives. Cent. Eur. J. Energetic Mater. 2018, 15, 351–363. [Google Scholar] [CrossRef]
- Nyberg, U.; Klippmark, V.; Karlström, H.; Beyglou, A.; Petropoulos, N. Short Time Measurements of Toxic Fumes from Detonation of Emulsion Explosive: Initial Tests in Blast Chamber; Swedish Blasting Research Centre och Luleå Tekniska Universitet: Luleå, Sweden, 2015. [Google Scholar]
- Mahajan, S.; Jagtap, S. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Appl. Mater. Today 2020, 18, 100483. [Google Scholar] [CrossRef]
- Brunelli, L.; Crow, J.P.; Beckman, J.S. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch. Biochem. Biophys. 1995, 316, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Suceska, M.; Tumara, B.S.; Skrlec, V.; Stankovic, S. Prediction of concentration of toxic gases produced by detonation of commercial explosives by thermochemical equilibrium calculations. Def. Technol. 2021. [Google Scholar] [CrossRef]
- Lyashenko, V.; Vorob’ev, A.; Nebohin, V.; Vorob’ev, K. Improving the efficiency of blasting operations in mines with the help of emulsion explosives. Min. Miner. Depos. 2018, 12, 95–102. [Google Scholar] [CrossRef]
- Pham, D.H.; Le, B.D.; Nguyen, C.T.; Tran, H.T. Modeling the fracture behavior of Ultra-High Performance Fiber Reinforced Concrete slabs under contact Blast Loading. IOP Conf. Ser. Mater. Sci. Eng. 2020, 869, 052079. [Google Scholar] [CrossRef]
- Nam, J.; Kim, H.; Kim, G. Experimental investigation on the blast resistance of fiber-reinforced cementitious composite panels subjected to contact explosions. Int. J. Concr. Struct. Mater. 2017, 11, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Jiang, N.; Yao, Y.; Zhou, C.; Luo, X.; Wu, T. Safety assessment of buried gas pipeline subject to surface explosion: A case study in Wuhan, China. Eng. Fail. Anal. 2021, 120, 105119. [Google Scholar] [CrossRef]
- Zlobin, B.; Silvestrov, V.; Shtertser, A.; Plastinin, A.; Kiselev, V. Enhancement of explosive welding possibilities by the use of emulsion explosive. Arch. Metall. Mater. 2014, 59, 1587–1592. [Google Scholar] [CrossRef] [Green Version]
- Zlobin, B.; Kiselev, V.; Shterzer, A.; Plastinin, A. Use of emulsion explosives in experimental studies of flows in the bonding zone in explosive welding. Combust. Explos. Shock Waves 2018, 54, 231–237. [Google Scholar] [CrossRef]
- Bogomolov, G.N.; Glazyrin, V.P.; Orlov, M.Y. Research destruction ice under dynamic loading. Part 1. Modeling explosive ice cover into account the temperature. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2015; Volume 110, p. 01014. [Google Scholar]
- Azmi, N.A.; Hilmi, A.H.; Yusof, M.A.; Ismail, A. Characteristics of Iron powder when Pressed using Explosive Pressing method. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; Volume 429, p. 012095. [Google Scholar]
- Ainalis, D.; Kaufmann, O.; Tshibangu, J.P.; Verlinden, O.; Kouroussis, G. Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations: A review. Rock Mech. Rock Eng. 2017, 50, 171–193. [Google Scholar] [CrossRef]
- Kumar, S.; Mishra, A.; Choudhary, B.; Sinha, R.; Deepak, D.; Agrawal, H. Prediction of ground vibration induced due to single hole blast using explicit dynamics. Min. Metall. Explor. 2020, 37, 733–741. [Google Scholar] [CrossRef]
- Xie, X.H.; Feng, Y.Q.; Liu, S.H.; Zhu, J. Thermal behavior and stability of emulsion explosives in the presence of ferrous ion. J. Therm. Anal. Calorim. 2020, 139, 999–1006. [Google Scholar] [CrossRef]
Density [kg/m3] | Sleep Time | VoD [m/s] |
---|---|---|
Unconfined EE | ||
1120 | 0 days | 4130 |
1100 | 3 days | 4200 |
1090 | 6 days | 4100 |
1110 | 9 days | 4000 |
1120 | 12 days | 3840 |
1100 | 15 days | 3780 |
EE in Borehole | ||
1120 | 1 day | 4920 |
1130 | 7 days | 4706 |
1160 | 15 days | 4359 |
EE in Plastic Tubes | ||
- | 30 min | 4230 ± 105 |
- | 60 min | 4005 ± 40 |
- | 180 min | 3732 ± 20 |
- | 24 h | 3543 ± 27.5 |
- | 48 h min | 3420 ± 32.5 |
- | 7 days | 3330 ± 40 |
- | 14 days | 3153 ± 25 |
- | 31 days | 3100 ± 12.5 |
- | 4 months | 3017 ± 15 |
- | 6 months | 2930 ± 25 |
Charge Diameter [mm] | VoD [m/s] |
---|---|
Emulinit 7L | |
32 | - |
40 | 3700 ± 40 |
50 | 3910 ± 30 |
Emulinit 8L | |
32 | 3310 ± 170 |
40 | 3630 ± 30 |
50 | 3990 ± 55 |
Emulinit 8L | CO2 | CO | NO2 | NO |
---|---|---|---|---|
Concentration [ppm] | 4583 ± 45 | 162 ± 11 | 1.4 ± 0.2 | 20.0 ± 7.4 |
Unit mass emission [dm3/kg] | 114.8 ± 1.1 | 4.11 ± 0.28 | 0.04 ± 0.01 | 0.51 ± 0.19 |
BK-1 | CO2 | CO | NO2 | NO |
Concentration [ppm] | 4664 ± 6 | 100 ± 4 | 1.5 ± 0.2 | 11.6 ± 2.8 |
Unit mass emission [dm3/kg] | 117.1 ± 0.9 | 2.51 ± 0.12 | 0.04 ± 0.01 | 0.29 ± 0.07 |
BK-2 | CO2 | CO | NO2 | NO |
Concentration [ppm] | 4553 ± 24 | 136 ± 18 | 1.2 ± 0.2 | 11.0 ± 5.3 |
Unit mass emission [dm3/kg] | 115.3 ± 0.4 | 3.45 ± 0.46 | 0.03 ± 0.01 | 0.28 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kramarczyk, B.; Suda, K.; Kowalik, P.; Swiatek, K.; Jaszcz, K.; Jarosz, T. Emulsion Explosives: A Tutorial Review and Highlight of Recent Progress. Materials 2022, 15, 4952. https://doi.org/10.3390/ma15144952
Kramarczyk B, Suda K, Kowalik P, Swiatek K, Jaszcz K, Jarosz T. Emulsion Explosives: A Tutorial Review and Highlight of Recent Progress. Materials. 2022; 15(14):4952. https://doi.org/10.3390/ma15144952
Chicago/Turabian StyleKramarczyk, Bartlomiej, Krystyna Suda, Patrycja Kowalik, Kuba Swiatek, Katarzyna Jaszcz, and Tomasz Jarosz. 2022. "Emulsion Explosives: A Tutorial Review and Highlight of Recent Progress" Materials 15, no. 14: 4952. https://doi.org/10.3390/ma15144952
APA StyleKramarczyk, B., Suda, K., Kowalik, P., Swiatek, K., Jaszcz, K., & Jarosz, T. (2022). Emulsion Explosives: A Tutorial Review and Highlight of Recent Progress. Materials, 15(14), 4952. https://doi.org/10.3390/ma15144952