Predicting Elastic Constants of Refractory Complex Concentrated Alloys Using Machine Learning Approach
Abstract
:1. Introduction
2. Data Generation and ML Models
2.1. Calculation of CALPHAD and Data Generation via DFT
2.2. Descriptor Selection
2.3. Machine Learning Models
3. Results and Discussion
3.1. Feature Selection Criteria
3.2. ML Model Performance
3.3. Additional Testing on The Final Model
3.4. Descriptor Importance and Visualization
3.5. Comparison of Current Work with Previous Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorsse, S.; Couzinié, J.P.; Miracle, D.B. From high-entropy alloys to complex concentrated alloys. C. R. Phys. 2018, 19, 721–736. [Google Scholar] [CrossRef]
- Gorsse, S.; Miracle, D.B.; Senkov, O.N. Mapping the world of complex concentrated alloys. Acta Mater. 2017, 135, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Senkov, O.N.; Gorsse, S.; Miracle, D.B. High temperature strength of refractory complex concentrated alloys. Acta Mater. 2019, 175, 394–405. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Thind, A.S.; Ren, G.; Mishra, R.; Flores, K.M. Microstructure and properties of NbVZr refractory complex concentrated alloys. Acta Mater. 2021, 213, 116919. [Google Scholar] [CrossRef]
- Jia, Y.; Jia, Y.; Wu, S.; Ma, X.; Wang, G. Novel ultralight-weight complex concentrated alloys with high strength. J. Mater. Sci. 2019, 12, 136. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Maiti, S.; Rai, B. Computational property predictions of Ta–Nb–Hf–Zr high entropy alloys. Sci. Rep. 2021, 11, 4815. [Google Scholar] [CrossRef]
- Boucetta, S. Theoretical study of elastic, mechanical and thermodynamic properties of MgRh Intermetallic compound. J. Magnes. Alloy. 2014, 2, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 1952, 65, 349. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Lu, S.; Dong, Z.; Ding, X.; Wang, Y.; Vitos, L. Elastic properties of AlxCrMnFeCoNi (0 ≤ x ≤ 5) high-entropy alloys from ab initio theory. Acta Mater. 2018, 155, 12–22. [Google Scholar] [CrossRef]
- Tian, L.Y.; Wang, G.; Harris, J.S.; Irving, D.L.; Zhao, J.; Vitos, L. Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 2017, 114, 243–252. [Google Scholar] [CrossRef]
- Dirras, G.; Lilensten, L.; Djemia, P.; Laurent-Brocq, M.; Tingau, D.; Couzinié, J.P.; Perrière, L.; Chauveau, T.; Guillot, I. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater. Sci. Eng. A 2016, 654, 30–38. [Google Scholar] [CrossRef]
- Tian, F.; Varga, L.K.; Chen, N.; Shen, J.; Vitos, L. Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 2014, 599, 19–25. [Google Scholar] [CrossRef]
- Liao, M.; Liu, Y.; Min, L.; Lai, Z.; Han, T.; Yang, D.; Zhu, J. Alloying effect on phase stability, elastic and thermodynamic properties of Nb-Ti-V-Zr high entropy alloy. Intermetallics 2018, 101, 152–164. [Google Scholar] [CrossRef]
- Wen, Z.; Zhao, Y.; Tian, J.; Wang, S.; Guo, Q.; Hou, H. Computation of stability, elasticity and thermodynamics in equiatomic AlCrFeNi medium-entropy alloys. J. Mater. Sci. 2019, 54, 2566–2576. [Google Scholar] [CrossRef]
- Ye, Y.X.; Musico, B.L.; Lu, Z.Z.; Xu, L.B.; Lei, Z.F.; Keppens, V.; Xu, H.X.; Nieh, T.G. Evaluating elastic properties of a body-centered cubic NbHfZrTi high-entropy alloy—A direct comparison between experiments and ab initio calculations. Intermetallics 2019, 109, 167–173. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Wang, Y.; Hao, X.; Liu, H. Microstructure and elastic constants of AlTiVMoNb refractory high-entropy alloy coating on Ti6Al4V by laser cladding. Mater. Res. Express 2019, 6, 116571. [Google Scholar] [CrossRef]
- Lee, C.; Kim, G.; Chou, Y.; Musicó, B.L.; Gao, M.C.; An, K.; Song, G.; Chou, Y.C.; Keppens, V.; Chen, W. Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy. Sci. Adv. 2020, 6, 4748. [Google Scholar] [CrossRef]
- Schwarz, R.B.; Vuorinen, J.F. Resonant ultrasound spectroscopy: Applications, current status and limitations. J. Alloys Compd. 2000, 310, 243–250. [Google Scholar] [CrossRef]
- Pei, Z.; Yin, J.; Hawk, J.A.; Alman, D.E.; Gao, M.C. Machine-learning informed prediction of high-entropy solid solution formation: Beyond the Hume-Rothery rules. Npj Comput. Mater. 2020, 6, 50. [Google Scholar] [CrossRef]
- Islam, N.; Huang, W.; Zhuang, H.L. Machine learning for phase selection in multi-principal Element alloys. Comput. Mater. Sci. 2018, 150, 230–235. [Google Scholar] [CrossRef]
- Huang, W.; Martin, P.; Zhuang, H.L. Machine-learning phase prediction of high-entropy alloys. Acta Mater. 2019, 169, 225–236. [Google Scholar] [CrossRef]
- Li, Y.; Guo, W. Machine-learning model for predicting phase formations of high-entropy alloys. Phys. Rev. Mater. 2019, 3, 095005. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, C.; Wang, C.; Antonov, S.; Xue, D.; Bai, Y.; Su, Y. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models. Acta Mater. 2020, 185, 528–539. [Google Scholar] [CrossRef]
- Qu, N.; Chen, Y.; Lai, Z.; Liu, Y.; Zhu, J. The phase selection via machine learning in high entropy alloys. Procedia Manuf. 2019, 37, 299–305. [Google Scholar] [CrossRef]
- Zeng, Y.; Man, M.; Bai, K.; Zhang, Y.W. Revealing high-fidelity phase selection rules for high entropy alloys: A combined CALPHAD and machine learning study. Mater. Des. 2021, 202, 109532. [Google Scholar] [CrossRef]
- Zhang, L.; Qian, K.; Schuller, B.W.; Shibuta, Y. Prediction on Mechanical Properties of Non-Equiatomic High-Entropy Alloy by Atomistic Simulation and Machine Learning. Metals 2020, 11, 922. [Google Scholar] [CrossRef]
- Khakurel, H.; Taufique, M.F.N.; Roy, A.; Balasubramanian, G.; Ouyang, G.; Cui, J.; Johnson, D.D.; Devanathan, R. Machine learning assisted prediction of the Young’s modulus of compositionally complex alloys. Sci. Rep. 2021, 11, 17149. [Google Scholar] [CrossRef]
- Kim, G.; Diao, H.; Lee, C.; Samaei, A.T.; Phan, T.; de Jong, M.; Jong, M.; An, K.; Ma, D.; Liaw, P.K.; et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Mater. 2019, 181, 124–138. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Gregus, M.; Ryvak, L.; Kulyk, V.; Chopyak, V. Hybrid Classifier via PNN-based Dimensionality Reduction Approach for Biomedical Engineering Task. Procedia Comput. Sci. 2021, 191, 230–237. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Duriagina, Z.; Shakhovska, N.; Kovtun, V.; Lotoshynska, N. Smart Web Service of Ti-Based Alloy’s Quality Evaluation for Medical Implants Manufacturing. Appl. Sci. 2022, 12, 5238. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Gregus, M.; Duriagina, Z.; Shakhovska, N. PNN-SVM Approach of Ti-Based Powder’s Properties Evaluation for Biomedical Implants Production. Comput. Mater. Contin. 2022, 71, 5933–5947. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, Y.; Wang, C.; Xue, D.; Bai, Y.; Antonov, S.; Dai, L.; Lookman, T.; Su, Y. Machine learning assisted design of high entropy alloys with desired property. Acta Mater. 2019, 170, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Klimenko, D.; Stepanov, N.; Li, J.; Fang, Q.; Zherebtsov, S. Machine Learning-Based Strength Prediction for Refractory High-Entropy Alloys of the Al-Cr-Nb-Ti-V-Zr System. Materials 2021, 14, 7213. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.; Kim, J.; Ding, H.; Xu, X.; Chen, R.; Guo, J.; Fu, H. Machine learning prediction of the mechanical properties of γ-TiAl alloys produced using random forest regression model. J. Mater. Res. Technol. 2022, 18, 520–530. [Google Scholar] [CrossRef]
- Andersson, J.O.; Helander, T.; Höglund, L.; Shi, P.; Sundman, B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad 2002, 26, 273–312. [Google Scholar]
- Gao, M.C.; Carney, C.S.; Doğan, Ö.N.; Jablonksi, P.D.; Hawk, J.A.; Alman, D.E. Design of refractory high-entropy alloys. JOM 2015, 67, 2653–2669. [Google Scholar] [CrossRef]
- Yao, H.W.; Qiao, J.W.; Gao, M.C.; Hawk, J.A.; Ma, S.G.; Zhou, H.F.; Zhang, Y. NbTaV-(Ti, W) refractory high-entropy alloys: Experiments and modeling. Mater. Sci. Eng. A 2016, 674, 203–211. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, M.C.; Zhang, Y.; Yang, S.; Guo, S.M. Senary refractory high entropy alloy MoNbTaTiVW. Mater. Sci. Technol. 2015, 31, 1207–1213. [Google Scholar] [CrossRef]
- Han, Z.D.; Luan, H.W.; Liu, X.; Chen, N.; Li, X.Y.; Shao, Y.; Yao, K.F. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng. A 2018, 712, 380–385. [Google Scholar] [CrossRef]
- Zunger, A.; Wei, S.H.; Ferreira, L.G.; Bernard, J.E. Special quasirandom structures. Phys. Rev. Let. 1990, 65, 353. [Google Scholar] [CrossRef] [Green Version]
- MedeA® Software. Materials Exploration and Design Analysis, CA, USA. Available online: https://www.materialsdesign.com/medea-software (accessed on 22 May 2022).
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations. Phys. Rev. B 2001, 63, 174103. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2004, 61, 1–93. [Google Scholar] [CrossRef]
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Comput. Mater. 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef] [Green Version]
- Sheng, G.; Liu, C.T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. 2011, 21, 433–446. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Trostianchyn, A.; Izonin, I.; Tkachenko, R.; Duriahina, Z. Prediction of Magnetic Remanence of Sm-Co Magnets Using Machine Learning Algorithms. In International Symposium on Engineering and Manufacturing 2021; Hu, Z., Petoukhov, S., Eds.; Springer: Cham, Switzerland; London, UK, 2022. [Google Scholar]
- Gao, M.C.; Niu, C.; Jiang, C.; Irving, D.L. Applications of special quasi-random structures to high-entropy alloys. In High-Entropy Alloys; Springer: Cham, Switzerland, 2010; Chapter 10; pp. 333–368. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; p. 30. [Google Scholar]
- Chanda, B.; Jana, P.P.; Das, J. A tool to predict the evolution of phase and Young’s modulus in high entropy alloys using artificial neural network. Comp. Mater. Sci. 2021, 197, 110619. [Google Scholar] [CrossRef]
- Grant, M.; Kunz, M.R.; Iyer, K.; Held, L.I.; Tasdizen, T.; Aguiar, J.A.; Dholabhai, P.P. Integrating atomistic simulations and machine learning to design multiprincipal element alloys with superior elastic modulus. J. Mater. Res. 2022, 37, 1497–1512. [Google Scholar] [CrossRef]
- Yang, C.; Ren, C.; Jia, Y.; Wang, G.; Li, M.; Lu, W. A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness. Acta Mater. 2022, 222, 117431. [Google Scholar] [CrossRef]
- Roy, A.; Babuska, T.; Krick, B.; Balasubramanian, G. Machine learned feature identification for predicting phase and Young’s modulus of low- medium-and high-entropy alloys. Scr. Mater. 2020, 185, 152–158. [Google Scholar] [CrossRef]
- Poletti, M.G.; Battezzati, L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 2014, 75, 297–306. [Google Scholar] [CrossRef]
- Guo, S. Phase selection rules for cast high entropy alloys: An overview. Mater. Sci. Technol. 2015, 31, 1223–1230. [Google Scholar] [CrossRef]
- Huang, X.; Jin, C.; Zhang, C.; Zhang, H.; Fu, H. Machine learning assisted modelling and design of solid solution hardened high entropy alloys. Mater. Des. 2021, 211, 110177. [Google Scholar] [CrossRef]
- Vazquez, G.; Singh, P.; Sauceda, D.; Couperthwaite, R.; Britt, N.; Youssef, K.; Johnson, D.D.; Arróyave, R. Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys. Acta Mater. 2022, 232, 117924. [Google Scholar] [CrossRef]
- Dai, D.; Xu, T.; Wei, X.; Ding, G.; Xu, Y.; Zhang, J.; Zhang, H. Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys. Comput. Mater. Sci. 2020, 175, 109618. [Google Scholar] [CrossRef]
- Ye, Y.F.; Zhang, Y.H.; He, Q.F.; Zhuang, Y.; Wang, S.; Shi, S.Q.; Hu, A.; Fan, J.; Yang, Y. Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Mater. 2018, 150, 182–194. [Google Scholar] [CrossRef]
Descriptors | Abbreviation | Descriptors Calculation Formula |
---|---|---|
Entropy of mixing | Entropy | |
Enthalpy of mixing | Enthalpy | |
Melting temperature | MT | |
Average atomic radius | AAR | |
Average electronegativity | AE | |
Unitless parameter Omega | Omega | |
Atomic size difference | ASD | |
Valence electron concentration | VEC | |
Electronegativity difference | ED | |
Geometrical parameter | GP |
Element | Radius (Å) | VEC | Pauling Electronegativity | Melting Temperature (Kelvin) |
---|---|---|---|---|
Cr | 1.249 | 6 | 1.66 | 2180 |
Hf | 1.578 | 4 | 1.3 | 2506 |
Mo | 1.363 | 6 | 2.16 | 2896 |
Nb | 1.429 | 5 | 1.6 | 2750 |
Re | 1.375 | 7 | 1.9 | 3459 |
Ta | 1.43 | 5 | 1.5 | 3290 |
Ti | 1.462 | 4 | 1.54 | 1941 |
V | 1.316 | 5 | 1.63 | 2183 |
W | 1.367 | 6 | 2.36 | 3695 |
Zr | 1.603 | 4 | 1.33 | 2128 |
Element | Cr | Hf | Mo | Nb | Re | Ta | Ti | V | W | Zr |
---|---|---|---|---|---|---|---|---|---|---|
Cr | 0 | −9 | 0 | −7 | −4 | −7 | −7 | −2 | 1 | −12 |
Hf | −9 | 0 | −4 | 4 | −2 | 3 | 0 | −2 | −6 | 0 |
Mo | 0 | −4 | 0 | −6 | −7 | −5 | −4 | 0 | 0 | −6 |
Nb | −7 | 4 | −6 | 0 | −26 | 0 | 2 | −1 | −8 | 4 |
Re | −4 | −30 | −7 | −26 | 0 | −24 | −25 | −13 | −4 | −35 |
Ta | −7 | 3 | −5 | 0 | −24 | 0 | 1 | −1 | −7 | 3 |
Ti | −7 | 0 | −4 | 2 | −25 | 1 | 0 | −2 | −6 | 0 |
V | −2 | −2 | 0 | −1 | −13 | −1 | −2 | 0 | −1 | −4 |
W | 1 | −6 | 0 | −8 | −4 | −7 | −6 | −1 | 0 | −9 |
Zr | 12 | 0 | −6 | 4 | −35 | 3 | 0 | −4 | −9 | 0 |
Elastic Constant | ML Models | Hyper-Tuned Hyperparameters |
---|---|---|
GBR | Learning rate: 0.01, max depth: 8, estimators: 900, subsample: 0.2 | |
C11 | RF | Max depth: 10, estimators: 1000 |
XGB | Learning rate: 0.2, estimators: 100 | |
GBR | Learning rate: 0.04, max depth: 4, estimators: 200, subsample: 0.7 | |
C12 | RF | Max depth: 10, estimators: 500 |
XGBoost | Learning rate: 0.1, estimators: 100 | |
GBR | Learning rate: 0.01, max depth: 6, estimators: 900, subsample: 0.3 | |
C44 | RF | Max depth: 10, estimators: 500 |
XGBoost | Learning rate: 0.1, estimators: 100 |
Elastic Constant | ML Models | R2 Train | R2 Test | MAE Train | MAE Test | RMSE Train | RMSE Test |
---|---|---|---|---|---|---|---|
GBR | 0.995 | 0.97 | 4.74 | 10.24 | 6.17 | 13.7 | |
C11 | RF | 0.995 | 0.95 | 6.31 | 12.17 | 8.25 | 16.69 |
XGBoost | 0.994 | 0.964 | 5.2 | 11.52 | 6.99 | 15.5 | |
GBR | 0.985 | 0.803 | 2.19 | 8.25 | 3.77 | 9.88 | |
C12 | RF | 0.979 | 0.815 | 3.032 | 8.2 | 4.46 | 10.10 |
XGBoost | 0.959 | 0.812 | 4.392 | 8.23 | 6.16 | 10.39 | |
GBR | 0.994 | 0.787 | 2.20 | 10.38 | 2.67 | 14.45 | |
C44 | RF | 0.981 | 0.761 | 3.58 | 10.86 | 4.62 | 15.4 |
XGBoost | 0.967 | 0.787 | 4.622 | 9.84 | 6.06 | 14.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, U.; Ghadimi, H.; Zhang, C.; Yang, S.; Guo, S. Predicting Elastic Constants of Refractory Complex Concentrated Alloys Using Machine Learning Approach. Materials 2022, 15, 4997. https://doi.org/10.3390/ma15144997
Bhandari U, Ghadimi H, Zhang C, Yang S, Guo S. Predicting Elastic Constants of Refractory Complex Concentrated Alloys Using Machine Learning Approach. Materials. 2022; 15(14):4997. https://doi.org/10.3390/ma15144997
Chicago/Turabian StyleBhandari, Uttam, Hamed Ghadimi, Congyan Zhang, Shizhong Yang, and Shengmin Guo. 2022. "Predicting Elastic Constants of Refractory Complex Concentrated Alloys Using Machine Learning Approach" Materials 15, no. 14: 4997. https://doi.org/10.3390/ma15144997
APA StyleBhandari, U., Ghadimi, H., Zhang, C., Yang, S., & Guo, S. (2022). Predicting Elastic Constants of Refractory Complex Concentrated Alloys Using Machine Learning Approach. Materials, 15(14), 4997. https://doi.org/10.3390/ma15144997