X-ray Thermo-Diffraction Study of the Aluminum-Based Multicomponent Alloy Al58Zn28Si8Mg6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Manufacturing
2.2. Selection of Sample Thermal Treatments and Study Temperatures
2.3. Thermodynamic Simulations
2.4. Microstructural Observations
2.5. X-ray Thermo-Diffraction Tests
3. Results
3.1. Thermodynamic Simulation Results
3.2. Microstructure of the Samples Depending on the Initial Thermal Condition
3.3. Evolution of the HCP Zn and Intermetallic Phases with Temperature
3.4. Evolution of Aluminum Phases
4. Discussion
4.1. Phase Evolution with Temperature
4.2. Aluminum Phases and Ageing
4.3. Effect of Strontium
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cantor, B. Multicomponent and High Entropy Alloys. Entropy 2014, 16, 4749–4768. [Google Scholar] [CrossRef] [Green Version]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Huang, P.-K.; Yeh, J.-W.; Shun, T.-T.; Chen, S.-K. Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Gao, M.C.; Alman, D.E. Searching for Next Single-Phase High-Entropy Alloy Compositions. Entropy 2013, 15, 4504–4519. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.-H.; Yeh, J.-W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Sharma, P.; Dwivedi, V.K.; Dwivedi, S.P. Development of High Entropy Alloys: A Review. Mater. Today Proc. 2021, 43, 502–509. [Google Scholar] [CrossRef]
- Steurer, W. Single-Phase High-Entropy Alloys—A Critical Update. Mater. Charact. 2020, 162, 110179. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.-W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Asadikiya, M.; Yang, S.; Zhang, Y.; Lemay, C.; Apelian, D.; Zhong, Y. A Review of the Design of High-Entropy Aluminum Alloys: A Pathway for Novel Al Alloys. J. Mater. Sci. 2021, 56, 12093–12110. [Google Scholar] [CrossRef]
- Miracle, D.B.; Miller, J.D.; Senkov, O.N.; Woodward, C.; Uchic, M.D.; Tiley, J. Exploration and Development of High Entropy Alloys for Structural Applications. Entropy 2014, 16, 494–525. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory High-Entropy Alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Youssef, K.M.; Zaddach, A.J.; Niu, C.; Irving, D.L.; Koch, C.C. A Novel Low-Density, High-Hardness, High-Entropy Alloy with Close-Packed Single-Phase Nanocrystalline Structures. Mater. Res. Lett. 2015, 3, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Gupta, M. An Insight into Evolution of Light Weight High Entropy Alloys: A Review. Metals 2016, 6, 199. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.-H. Three Strategies for the Design of Advanced High-Entropy Alloys. Entropy 2016, 18, 252. [Google Scholar] [CrossRef]
- Tseng, K.; Yang, Y.; Juan, C.; Chin, T.; Tsai, C.; Yeh, J. A Light-Weight High-Entropy Alloy Al20Be20Fe10Si15Ti35. Sci. China Technol. Sci. 2018, 61, 184–188. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Vicario, I.; Albizuri, J.; Guraya, T.; Garcia, J.C. Phase Prediction, Microstructure and High Hardness of Novel Light-Weight High Entropy Alloys. J. Mater. Res. Technol. 2019, 8, 795–803. [Google Scholar] [CrossRef]
- Yang, X.; Chen, S.Y.; Cotton, J.D.; Zhang, Y. Phase Stability of Low-Density, Multiprincipal Component Alloys Containing Aluminum, Magnesium, and Lithium. JOM 2014, 66, 2009–2020. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Vicario, I.; Albizuri, J.; Guraya, T.; Acuña, E.M. Design, Microstructure and Mechanical Properties of Cast Medium Entropy Aluminium Alloys. Sci. Rep. 2019, 9, 6792. [Google Scholar] [CrossRef]
- Tun, K.S.; Murugan, P.; Srivatsan, T.S.; Gupta, M. Synthesis and Characterization of Aluminium Based Multicomponent Alloys. Mater. Today Proc. 2021, 46, 1210–1214. [Google Scholar] [CrossRef]
- Nagase, T.; Todai, M.; Wang, P.; Sun, S.-H.; Nakano, T. Design and Development of (Ti, Zr, Hf)-Al Based Medium Entropy Alloys and High Entropy Alloys. Mater. Chem. Phys. 2022, 276, 125409. [Google Scholar] [CrossRef]
- Nagase, T.; Terayama, A.; Nagaoka, T.; Fuyama, N.; Sakamoto, T. Alloy Design and Fabrication of Ingots of Al–Mg–Li–Ca Light-Weight Medium Entropy Alloys. Mater. Trans. 2020, 61, 1369–1380. [Google Scholar] [CrossRef]
- Krajewski, W.K.; Buraś, J.; Krajewski, P.K.; Greer, A.L.; Faerber, K.; Schumacher, P. New Developments of Al-Zn Cast Alloys. Mater. Today Proc. 2015, 2, 4978–4983. [Google Scholar] [CrossRef]
- Krajewski, P.K.; Greer, A.L.; Krajewski, W.K. Main Directions of Recent Works on Al-Zn-Based Alloys for Foundry Engineering. J. Mater. Eng. Perform. 2019, 28, 3986–3993. [Google Scholar] [CrossRef] [Green Version]
- Sivasankaran, S.; Ramkumar, K.R.; Ammar, H.R.; Al-Mufadi, F.A.; Alaboodi, A.S.; Irfan, O.M. Microstructural Evolutions and Enhanced Mechanical Performance of Novel Al-Zn Die-Casting Alloys Processed by Squeezing and Hot Extrusion. J. Mater. Process. Technol. 2021, 292, 117063. [Google Scholar] [CrossRef]
- Gorsse, S.; Senkov, O.N. About the Reliability of CALPHAD Predictions in Multicomponent Systems. Entropy 2018, 20, 899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Xie, L.; Wang, W.Y.; Liaw, P.K.; Zhang, Y. High-Throughput Calculations for High-Entropy Alloys: A Brief Review. Front. Mater. 2020, 7, 290. [Google Scholar] [CrossRef]
- Feng, R.; Gao, M.C.; Lee, C.; Mathes, M.; Zuo, T.; Chen, S.; Hawk, J.A.; Zhang, Y.; Liaw, P.K. Design of Light-Weight High-Entropy Alloys. Entropy 2016, 18, 333. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Vicario, I.; Albizuri, J.; Guraya, T.; Koval, N.E.; Garcia, J.C. Compound Formation and Microstructure of As-Cast High Entropy Aluminums. Metals 2018, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Asadikiya, M.; Zhang, Y.; Wang, L.; Apelian, D.; Zhong, Y. Design of Ternary High-Entropy Aluminum Alloys (HEAls). J. Alloy Compd. 2022, 891, 161836. [Google Scholar] [CrossRef]
- Popović, S.; Gržeta, B. Precipitation and Dissolution Phenomena in Al-Zn Alloys. Croat. Chem. Acta 1999, 72, 621–643. [Google Scholar]
- Skoko, Ž.; Popović, S.; Štefanić, G. Microstructure of Al-Zn and Zn-Al Alloys. Croat. Chem. Acta 2009, 82, 405–420. [Google Scholar]
- Hayoune, A.; Hamana, D. A Dilatometric and High-Temperature X-ray Diffraction Study of Cold Deformation Effect on the Interaction between Precipitation, Recovery and Recrystallization Reactions in Al–12 wt.% Mg Alloy. Mater. Sci. Eng. A 2010, 527, 7261–7264. [Google Scholar] [CrossRef]
- McCusker, L.B.; Von Dreele, R.B.; Cox, D.E.; Louër, D.; Scardi, P. Rietveld Refinement Guidelines. J. Appl. Cryst. 1999, 32, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Toby, B.H. R Factors in Rietveld Analysis: How Good Is Good Enough? Powder Diffr. 2006, 21, 67–70. [Google Scholar] [CrossRef] [Green Version]
- Mondolfo, L.F. Metallography of Aluminum Alloys; John Wiley & Sons: New York, NY, USA; Chapman & Hall: London, UK, 1943. [Google Scholar]
- Murray, J.L. The Al−Zn (Aluminum-Zinc) System. Bull. Alloy Phase Diagr. 1983, 4, 55–73. [Google Scholar] [CrossRef]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. On the Role of Traps in the Microstructural Control of Environmental Hydrogen Embrittlement of a 7xxx Series Aluminum Alloy. J. Alloy Compd. 2021, 855, 157300. [Google Scholar] [CrossRef]
- Mao, G.; Liu, S.; Gao, W.; Wang, J.; Liu, D. Effect of Zn or Zn + Cu Addition on the Precipitation in Al–Mg–Si Alloys: A Review. Trans. Indian Inst. Met. 2021, 74, 2925–2938. [Google Scholar] [CrossRef]
- Petrov, D.; Watson, A.; Gröbner, J.; Rogl, P.; Tedenac, J.; Bulanova, M.; Turkevich, V.; Lukas, H.L. Al-Mg-Zn (aluminium-magnesium-zinc): Light metal ternary systems: Phase diagrams, crystallographic and thermodynamic data. In Light Metal Systems. Part 3; Effenberg, G., Ilyenko, S., Eds.; Landolt-Börnstein—Group IV Physical, Chemistry; Springer: Berlin/Heidelberg, Germany, 2005; Volume 11A3, pp. 1–19. ISBN 978-3-540-25013-5. [Google Scholar]
- Jacobs, M.H. The Nucleation and Growth of Precipitates in Aluminium Alloys. Ph.D. Thesis, University of Warwick, Coventry, UK, 1969. [Google Scholar]
- Mao, F.; Chen, F.; Han, Q.; Han, J.; Cao, Z.; Wang, T.; Li, T. Real Time Observation on the Solidification of Strontium-Modified Zinc–Aluminum–Silicon Alloys by Synchrotron Microradiography. J. Alloy Compd. 2014, 608, 343–351. [Google Scholar] [CrossRef]
- Mao, F.; Chen, F.; Yan, G.; Wang, T.; Cao, Z. Effect of Strontium Addition on Silicon Phase and Mechanical Properties of Zn–27Al–3Si Alloy. J. Alloy Compd. 2015, 622, 871–879. [Google Scholar] [CrossRef]
- Mao, F.; Wei, S.; Chen, C.; Zhang, C.; Wang, X.; Cao, Z. Modification of the Silicon Phase and Mechanical Properties in Al-40Zn-6Si Alloy with Eu Addition. Mater. Des. 2020, 186, 108268. [Google Scholar] [CrossRef]
Al | Zn | Mg | Si | Cu | Fe | Sr | |
---|---|---|---|---|---|---|---|
wt. % | 41.15 | 48.40 | 4.11 | 5.83 | 0.43 | 0.05 | 0.03 |
at. % | 57.56 | 27.93 | 6.38 | 7.83 | 0.26 | 0.03 | 0.01 |
Sample Condition | Heat Treatment |
---|---|
as-cast | None. |
Eq280 | Heated to 280 °C and immediately slowly cooled (10 °C/min) to room temperature. |
Eq360 | Heated to 360 °C and immediately slowly cooled (10 °C/min) to room temperature. |
Q280 | Solution treated for 24 h at 280 °C, then water quenched to room temperature. |
Q310 | Solution treated for 24 h at 310 °C, then water quenched to room temperature. |
Q360 | Solution treated for 24 h at 325 °C, then heated and kept at 360 °C for 24 h and water quenched. |
Q380 | Solution treated for 24 h at 325 °C, then heated and kept at 380 °C for 24 h and water quenched. |
Reaction | Experimental T (°C) in Al58Zn28Si8Mg6 Alloy | T (°C) in Al–Mg–Zn System [40] |
---|---|---|
(Al) + (Zn) → (Al, Zn) | ~285 | - |
(Al) + (Zn), Mg2Zn11 → (Al, Zn) | - | 277 |
Mg2Zn11 + (Al) → MgZn2 + (Al, Zn) | ~350 | 331 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilbao, Y.; Trujillo, J.J.; Vicario, I.; Arruebarrena, G.; Hurtado, I.; Guraya, T. X-ray Thermo-Diffraction Study of the Aluminum-Based Multicomponent Alloy Al58Zn28Si8Mg6. Materials 2022, 15, 5056. https://doi.org/10.3390/ma15145056
Bilbao Y, Trujillo JJ, Vicario I, Arruebarrena G, Hurtado I, Guraya T. X-ray Thermo-Diffraction Study of the Aluminum-Based Multicomponent Alloy Al58Zn28Si8Mg6. Materials. 2022; 15(14):5056. https://doi.org/10.3390/ma15145056
Chicago/Turabian StyleBilbao, Yoana, Juan José Trujillo, Iban Vicario, Gurutze Arruebarrena, Iñaki Hurtado, and Teresa Guraya. 2022. "X-ray Thermo-Diffraction Study of the Aluminum-Based Multicomponent Alloy Al58Zn28Si8Mg6" Materials 15, no. 14: 5056. https://doi.org/10.3390/ma15145056
APA StyleBilbao, Y., Trujillo, J. J., Vicario, I., Arruebarrena, G., Hurtado, I., & Guraya, T. (2022). X-ray Thermo-Diffraction Study of the Aluminum-Based Multicomponent Alloy Al58Zn28Si8Mg6. Materials, 15(14), 5056. https://doi.org/10.3390/ma15145056