Experimental and Numerical Investigation on the Shear Behavior of Engineered Cementitious Composite Beams with Hybrid Fibers
Abstract
:1. Introduction
2. Research Significance
- (a)
- Quantifying the effect of different types of fiber addition (i.e., mono and hybrid combinations) for improving the overall performance of ECC beams under shear.
- (b)
- Developing a valid nonlinear finite element modeling approach for the structural evaluation of mono and hybrid-fiber-reinforced ECC beams under shear.
- (c)
- Optimizing the different design parameters, namely (a) compressive strength of ECC, (b) ratio of longitudinal reinforcement and (c) transverse reinforcement spacing for hybrid-fiber-based ECC members.
3. Experimental Program
3.1. Composition of Mix and Materials
3.2. Details of Specimens
3.3. Test Setup and Instrumentation Details
4. Results and Discussions
4.1. Stress Versus Strain Behavior of ECC Specimen
4.2. Nonlinear Finite Element Analysis
4.2.1. Material Modeling
4.2.2. Modeling Procedure and Boundary Conditions
4.2.3. Meshing and Mesh Convergence
4.3. Load–Deflection Behavior Comparison
4.4. Load–Strain Behavior and Energy Absorption Capacity
4.5. Crack Pattern and Failure Modes
4.6. Parametric Studies
5. Conclusions
- The shear capacity of ECC beams with hybrid fibers was significantly higher when compared to other mono fiber combinations. ECC beams with 2% PVA fibers had the second best performance in peak load capacity and ultimate deflections. ECC beams with steel and PP fibers showed the lowest peak shear capacity.
- Adding hybrid fibers in ECC beams helped to increase the critical shear crack angle, which denotes the change in the type of failure from a brittle diagonal tension mode to a ductile bending mode. It is worth noting that adding other types of fibers was insufficient to change the failure mode.
- ECC beams’ energy absorption/toughness increased because of the use of hybrid PP and PVA fibers. Among the specimen series considered, hybrid fibers produced a higher energy absorption in ECC beams compared to other mono-fiber-reinforced ones.
- The predictions obtained from the FE analysis matched well with the experiments in terms of load versus deflection behavior and failure pattern. From the parametric investigation, it can be concluded that the use of stirrups at a closer spacing of 75 mm helped to enhance the shear resistance of ECC beams due to the combined contribution from fibers and steel reinforcement, thereby converting the failure type to flexure.
- The preliminary findings from the work on the shear behavior of hybrid-fiber-reinforced ECC beams provide insights into their effectiveness in enhancing the load-carrying capacity and conversion of the failure mode to ductile flexure mode. Hence, it can be concluded that the use of hybrid-fiber-reinforced ECC for the practical construction of shear dominant members may eliminate the need for the provision of transverse stirrups. However, a detailed study is further required to propose generic design guidelines for the practical implementation of hybrid-fiber-reinforced ECC members, which will be the scope for further work.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Ameri, R.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Özakça, M.; Vatin, N.I. Residual Impact Performance of ECC Subjected to Sub-High Temperatures. Materials 2022, 15, 454. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Tang, S.; Huang, J.; Tang, C.; Wang, L.; Liu, Y. Fractal Analysis on Pore Structure and Modeling of Hydration of Magnesium Phosphate Cement Paste. Fractal Fract. 2022, 6, 337. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Z.; Liu, B.; Zhao, F.; Tang, S.; Jin, M. Effects of Fly Ash Dosage on Shrinkage, Crack Resistance and Fractal Characteristics of Face Slab Concrete. Fractal Fract. 2022, 6, 335. [Google Scholar] [CrossRef]
- Wang, L.; He, T.; Zhou, Y.; Tang, S.; Tan, J.; Liu, Z.; Su, J. The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Constr. Build. Mater. 2021, 282, 122706. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Cruz, A.S.A.; Marvila, M.T.; de Oliveira, L.B.; Monteiro, S.N.; Vieira, C.M.F.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymers 2021, 13, 2493. [Google Scholar] [CrossRef]
- Azevedo, A.R.; Marvila, M.T.; Zanelato, E.B.; Alexandre, J.; Xavier, G.C.; Cecchin, D. Development of mortar for laying and coating with pineapple fibers. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 187–193. [Google Scholar] [CrossRef]
- Esfahani, S.V.M.; Sharbatdhar, M.K. Substitution effects of conventional concrete with high-performance fiber-reinforced cementitious composite (HPFRCC) in beams reinforced with GFRP bars. Case Stud. Constr. Mater. 2020, 13, e00440. [Google Scholar] [CrossRef]
- Ramakrishnan, K.; Depak, S.R.; Hariharan, K.R.; Abid, S.R.; Murali, G.; Cecchin, D.; Fediuk, R.; Amran, Y.M.; Abdelgader, H.S.; Khatib, J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Constr. Build. Mater. 2021, 298, 123857. [Google Scholar] [CrossRef]
- Wu, L.-S.; Yu, Z.-H.; Zhang, C.; Bangi, T. Design approach, mechanical properties and cost-performance evaluation of ultra-high performance engineered cementitious composite (UHP-ECC): A review. Constr. Build. Mater. 2022, 340, 3057801. [Google Scholar] [CrossRef]
- Dong, B.; Pan, J.; Xu, L. Numerical and theoretical analysis of beam-to-column connections with ECC ring beams subjected to local compression loading. J. Build. Eng. 2022, 52, 104466. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, Y.; Ma, L.; Li, V.C. Influence of printing parameters on 3D printing engineered cementitious composites (3DP-ECC). Cem. Concr. Compos. 2022, 130, 104562. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, X.; Li, K.; Jin, L.; Zhu, J. Behavior of confined concrete columns with HSSSWR meshes reinforced ECC jacket under uniaxial compression. SSRN Electron. J. 2022, 342, 127930. [Google Scholar] [CrossRef]
- Do, T.D.D.; Yen, K.-J.; Yen, C.-H.; Hung, C.-C. Impact of tension stiffening on the tensile and flexural behavior of ECC ferrocement. Constr. Build. Mater. 2022, 329, 127201. [Google Scholar] [CrossRef]
- Singh, S.B.; Sivasubramanian, M.V.R. Performance of DFRCC-Concrete frames under flexural loading. Constr. Mater. 2012, 10. [Google Scholar]
- Arulanandam, P.M.; Sivasubramnaian, M.V.; Chellapandian, M.; Murali, G.; Vatin, N.I. Analytical and Numerical Investigation of the Behavior of Engineered Cementitious Composite Members under Shear Loads. Materials 2022, 15, 4640. [Google Scholar] [CrossRef] [PubMed]
- Arulanandam, P.M.; Singh, S.B.; Kanakubo, T.; Sivasubramania, M.V.R. Behavior of engineered cementitious composite structural elements—A review. Indian Concr. J. 2020, 94, 5–28. [Google Scholar]
- Guan, Y.; Wu, J.; Sun, R.; Ge, Z.; Bi, Y.; Zhu, D. Shear behavior of short headed studs in Steel-ECC composite structure. Eng. Struct. 2022, 250, 113423. [Google Scholar] [CrossRef]
- Gu, D.; Pan, J.; Mustafa, S.; Huang, Y.; Luković, M. Shear transfer mechanism in reinforced engineered cementitious composite (ECC) beams: Quantification of Vs and Vc. Eng. Struct. 2022, 261, 114282. [Google Scholar] [CrossRef]
- Meng, D.; Lee, C.K.; Zhang, Y.X. Flexural and shear behaviours of plain and reinforced polyvinyl alcohol-engineered cementitious composite beams. Eng. Struct. 2017, 151, 261–272. [Google Scholar] [CrossRef]
- Alyousif, A.; Anil, O.; Sahmaran, M.; Lachemi, M.; Yildirim, G.; Ashour, A.F. Comparison of shear behaviour of engineered cementitious composite and normal concrete beams with different shear span lengths. Mag. Concr. Res. 2016, 68, 217–228. [Google Scholar] [CrossRef]
- Paegle, I.; Fischer, G. Phenomenological interpretation of the shear behavior of reinforced Engineered Cementitious Composite beams. Cem. Concr. Compos. 2016, 73, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.K. Hassan AAA Influence of fiber type on shear behavior of engineered cementitious composite. Mag. Concr. Res. 2021, 73, 464–475. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, P.; Zheng, X.; Cai, L.; Guo, R.; Wei, D. Shear behavior of RC slender beams without stirrups by using precast U-shaped ECC permanent formwork. Constr. Build. Mater. 2020, 260, 120430. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Wang, W.-W.; Mosalam, K.M.; Fang, Q.; Chen, L.; Zhu, Z.-F. Experimental investigation and numerical analysis of RC beams shear strengthened with FRP/ECC composite layer. Compos. Struct. 2020, 246, 112436. [Google Scholar] [CrossRef]
- Kang, S.-B.; Tan, K.H.; Zhou, X.-H.; Yang, B. Experimental investigation on shear strength of engineered cementitious composites. Eng. Struct. 2017, 143, 141–151. [Google Scholar] [CrossRef]
- Yang, X.; Gao, W.-Y.; Dai, J.-G.; Lu, Z.-D. Shear strengthening of RC beams with FRP grid-reinforced ECC matrix. Compos. Struct. 2020, 241, 112120. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Aswin, M.; Beatty, W.H.; Hafiz, M. Longitudinal shear resistance of PVA-ECC composite slabs. Structures 2016, 5, 247–257. [Google Scholar] [CrossRef]
- Shan, W.; Liu, J.; Ding, Y.; Mao, W.; Jiao, Y. Assessment of bond-slip behavior of hybrid fiber reinforced engineered cementitious composites (ECC) and deformed rebar via AE monitoring. Cem. Concr. Compos. 2021, 118, 103961. [Google Scholar] [CrossRef]
- Tan, G.; Zhu, Z.; Wang, W.; He, X. A fractal-based approach for cracking characterization and whole process prediction exploration of PP fiber reinforced ECC containing sustainable ingredients. Constr. Build. Mater. 2022, 318, 126015. [Google Scholar] [CrossRef]
- Wang, Q.; Lai, M.H.; Zhang, J.; Wang, Z.; Ho, J.C.M. Greener engineered cementitious composite (ECC)—The use of pozzolanic fillers and unoiled PVA fibers. Constr. Build. Mater. 2020, 247, 118211. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, Y.; Ma, G.; Luo, H. Hybrid effects of steel fibers, basalt fibers and calcium sulfate on mechanical performance of PVA-ECC containing high-volume fly ash. Cem. Concr. Compos. 2019, 97, 357–368. [Google Scholar] [CrossRef]
- Suryanto, B.; Cockburn, B.; Lie, H.A.; McCarter, J. An alternate method for determining tensile properties of engineered cementitious composites. Procedia Eng. 2017, 171, 584–591. [Google Scholar] [CrossRef]
- ABAQUS Standard; version 6.13-4. Dassault Systems Simulia Corp.: Johnston, RI, USA; Hibbitt Karlsson & Sorensen Inc.: Providence, RI, USA, 2014.
- Singh, S.B.; Sivasubramanian, M.V.R. Micromechanics based design approach for understanding the behavior of an ECC beam. Indian Concr. J. 2010, 84, 27–37. [Google Scholar]
- Kanda, T.; Li, V.C. New Micromechanics Design Theory for Pseudostrain Hardening Cementitious Composite. J. Eng. Mech. 1999, 125, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Li, V.C.; Wang, S. Flexural behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams. ACI Mater. J. 2002, 99, 11–21. [Google Scholar]
- Chellapandian, M.; Prakash, S.S.; Rajagopal, A. Analytical and finite element studies on hybrid FRP strengthened RC column elements under axial and eccentric compression. Compos. Struct. 2018, 184, 234–248. [Google Scholar] [CrossRef]
- Chellapandian, M.; Jain, S.; Prakash, S.S.; Sharma, A. Effect of Cyclic Damage on the Performance of RC Square Columns Strengthened Using Hybrid FRP Composites under Axial Compression. Fibers 2019, 7, 90. [Google Scholar] [CrossRef] [Green Version]
Parameters | Different Fibers Used | ||
---|---|---|---|
Fiber Type | |||
Polypropylene | Polyvinyl Alcohol | Steel | |
Specific gravity | 0.91 | 1.30 | 7.85 |
Tensile strength (MPa) | 550 | 1600 | 1345 |
Elastic modulus (GPa) | 3.5 | 39.0 | 200.0 |
Fiber length (mm) | 20 | 12 | 30 |
Fiber diameter (mm) | 0.022 | 0.040 | 0.5 |
Aspect ratio (L/D) | 910 | 300 | 60 |
Beam ID | Area of Tension Bars (mm2) | ρs (%) | Type of Discrete Fiber | Fiber Content (Vf) |
---|---|---|---|---|
ECC-ST | 10 = 157 | 1.04 | Steel | 2.0% |
ECC-PP | 10 = 157 | 1.04 | Polypropylene | 2.0% |
ECC-PVA | 10 = 157 | 1.04 | Polyvinyl Alcohol | 2.0% |
ECC-HYB | 10 = 157 | 1.04 | PVA + PP | 2.0% (1.0% PVA + 1.0% PP) |
Member ID | Initial Cracking Load (kN) | Initial Cracking Displ. (mm) | Ultimate Load (kN) | Displ. @ Ultimate Load | Energy Absorption (kN.mm) | Ultimate Load from FE (PFEA) | PFEA/PEXP Ratio | Failure Mode | Angle of Critical Shear Crack (θsc) |
---|---|---|---|---|---|---|---|---|---|
ECC-PVA | 15.0 | 1.2 | 55.0 | 6.5 | 506.5 | 42.6 | 0.77 | ST | 58.8 |
ECC-PP | 15.0 | 3.4 | 34.1 | 15.8 | 384.1 | 38.8 | 1.14 | ST | 35.9 |
ECC-ST | 10.0 | 1.1 | 37.6 | 9.4 | 269.3 | 40.9 | 1.09 | ST | 46.4 |
ECC-HYB | 15.0 | 1.3 | 43.5 | 14.2 | 497.4 | 39.0 | 0.90 | FS | 68.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maheswaran, J.; Chellapandian, M.; Sivasubramanian, M.V.R.; Murali, G.; Vatin, N.I. Experimental and Numerical Investigation on the Shear Behavior of Engineered Cementitious Composite Beams with Hybrid Fibers. Materials 2022, 15, 5059. https://doi.org/10.3390/ma15145059
Maheswaran J, Chellapandian M, Sivasubramanian MVR, Murali G, Vatin NI. Experimental and Numerical Investigation on the Shear Behavior of Engineered Cementitious Composite Beams with Hybrid Fibers. Materials. 2022; 15(14):5059. https://doi.org/10.3390/ma15145059
Chicago/Turabian StyleMaheswaran, Jeyaprakash, Maheswaran Chellapandian, Madappa V. R. Sivasubramanian, Gunasekaran Murali, and Nikolai Ivanovich Vatin. 2022. "Experimental and Numerical Investigation on the Shear Behavior of Engineered Cementitious Composite Beams with Hybrid Fibers" Materials 15, no. 14: 5059. https://doi.org/10.3390/ma15145059
APA StyleMaheswaran, J., Chellapandian, M., Sivasubramanian, M. V. R., Murali, G., & Vatin, N. I. (2022). Experimental and Numerical Investigation on the Shear Behavior of Engineered Cementitious Composite Beams with Hybrid Fibers. Materials, 15(14), 5059. https://doi.org/10.3390/ma15145059