Reduced Graphene Oxide-Coated Separator to Activate Dead Potassium for Efficient Potassium Batteries
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, J.W.; Yang, L.Y.; Yuan, L.X.; Yuan, K.; Zhang, Y.; Huang, Y.Y.; Lin, J.; Pan, F.; Huang, Y.H. Alkali-Metal Anodes: From Lab to Market. Joule 2019, 3, 2334–2363. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.J.; Huang, J.Q.; Zhang, Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 2017, 46, 5237–5288. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Dong, L.; Fu, J.; Chen, L.; Zhou, J.; Zong, P.; Liu, G.; Shi, L. Enhanced interfacial stability with a novel boron-centered crosslinked hybrid polymer gel electrolytes for lithium metal batteries. Chem. Eng. J. 2022, 428, 131100. [Google Scholar] [CrossRef]
- McIlwaine, N.; Foley, A.M.; Morrow, D.J.; Al Kez, D.; Zhang, C.; Lu, X.; Best, R.J. A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems. Energy 2021, 229, 120461. [Google Scholar] [CrossRef]
- Thakur, A.K.; Majumder, M.; Patole, S.P.; Zaghib, K.; Reddy, M.V. Metal–organic framework-based materials: Advances, exploits, and challenges in promoting post Li-ion battery technologies. Mater. Adv. 2021, 2, 2457–2482. [Google Scholar] [CrossRef]
- Li, P.; Lu, J.; Cui, H.; Ruan, S.; Zeng, Y.-J. The development, application, and performance of black phosphorus in energy storage and conversion. Mater. Adv. 2021, 2, 2483–2509. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, H.B.; Feng, Y.; Wu, Z.S.; Yu, Y. The Promise and Challenge of Phosphorus-Based Composites as Anode Materials for Potassium-Ion Batteries. Adv. Mater. 2019, 31, 1901414. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Y.; Xing, Z.; Lam, C.W.K.; Pang, S.S.; Zhang, W.; Ju, Z. Advanced Carbon-Based Anodes for Potassium-Ion Batteries. Adv. Energy Mater. 2019, 9, 1900343. [Google Scholar] [CrossRef]
- Sultana, I.; Rahman, M.M.; Chen, Y.; Glushenkov, A.M. Potassium-Ion Battery Anode Materials Operating through the Alloying-Dealloying Reaction Mechanism. Adv. Funct. Mater. 2018, 28, 1703857. [Google Scholar] [CrossRef]
- Yu, P.; Zeng, Y.; Zhang, H.; Yu, M.; Tong, Y.; Lu, X. Flexible Zn-Ion Batteries: Recent Progresses and Challenges. Small 2019, 15, 1804760. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhu, G.; Zhang, Y.; Liang, H.; Huang, W. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res. 2021, 15, 2023–2029. [Google Scholar] [CrossRef]
- Liu, Q.; Rao, A.M.; Han, X.; Lu, B. Artificial SEI for Superhigh-Performance K-Graphite Anode. Adv. Sci. 2021, 8, 2003639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, J.; Wang, X.; Huang, H.; Yao, M. First-Principles Study of Transition Metal Ti-Based MXenes (Ti2MC2Tx and M2TiC2Tx) as Anode Materials for Sodium-Ion Batteries. ACS Appl. Nano Mater. 2022, 5, 2358–2366. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W.; Liu, K. Rational modulation of emerging MXene materials for zinc-ion storage. Carbon Energy 2021, 4, 60–76. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhong, W.; Zhang, Y.; Dong, P.; Sun, S.; Zhang, Y.; Li, X. Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries. Carbon Energy 2021, 3, 541–553. [Google Scholar] [CrossRef]
- Liu, P.; Mitlin, D. Emerging Potassium Metal Anodes: Perspectives on Control of the Electrochemical Interfaces. Acc. Chem. Res. 2020, 53, 1161–1175. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Chen, Z.; Lu, Z.; Si, L. Dual-Ion Stabilized Layered Structure of O-V-O for Zero-Strain Potassium Insertion and Extraction. Adv. Sci. 2022, 2202550. [Google Scholar] [CrossRef]
- Sha, M.; Liu, L.; Zhao, H.; Lei, Y. Anode materials for potassium-ion batteries: Current status and prospects. Carbon Energy 2020, 2, 350–369. [Google Scholar] [CrossRef]
- Cheong, J.Y.; Jung, J.-W.; Kim, C.; Kim, I.-D. Scalable top-down synthesis of functional carbon nanosheets by aronia fruit powder for Li+ and K+ storage. Electrochim. Acta 2021, 377, 138068. [Google Scholar] [CrossRef]
- Han, B.; Chen, S.; Guo, C.; Wu, M.; Wang, Y. Atomic layer deposition of alumina onto yolk-shell FeS/MoS2 as universal anodes for Li/Na/K-Ion batteries. Electrochim. Acta 2022, 402, 139471. [Google Scholar] [CrossRef]
- Qiu, R.; Fei, R.; Zhang, T.; Liu, X.; Jin, J.; Fan, H.; Wang, R.; He, B.; Gong, Y.; Wang, H. Biomass-derived, 3D interconnected N-doped carbon foam as a host matrix for Li/Na/K-selenium batteries. Electrochim. Acta 2020, 356, 136832. [Google Scholar] [CrossRef]
- Liu, W.; Liu, P.; Mitlin, D. Tutorial review on structure-dendrite growth relations in metal battery anode supports. Chem. Soc. Rev. 2020, 49, 7284–7300. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M.; Suo, G.; Wang, W.A.; Xi, K.; Iqbal, S.B. Improvement in potassium ion batteries electrodes: Recent developments and efficient approaches. J. Energy Chem. 2021, 62, 307–337. [Google Scholar] [CrossRef]
- Ge, J.; Yi, X.; Fan, L.; Lu, B. An all-organic aqueous potassium dual-ion battery. J. Energy Chem. 2021, 57, 28–33. [Google Scholar] [CrossRef]
- Li, W.; Huang, B.; Liu, Z.; Yang, J.; Li, Y.; Xiao, S.; Chen, Q.; Li, G.; Zhao, X.; Zhang, W. NiS2 wrapped into graphene with strong Ni-O interaction for advanced sodium and potassium ion batteries. Electrochim. Acta 2021, 369, 137704. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhang, F.; Long, G.; Fan, S.; Zheng, Y.; Ye, W.; Li, Q.; Wang, X.; Li, H.; et al. Fe, N co-doped amorphous carbon as efficient electrode materials for fast and stable Na/K-storage. Electrochim. Acta 2021, 396, 139265. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, X.; Li, Y.; Zeng, P.; Liu, H.; Yu, H.; Wu, M.; Li, Z.; Shao, D.; Miao, C.; et al. Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated. Chem. Eng. J. 2020, 385, 123905. [Google Scholar] [CrossRef]
- Aslam, M.K.; Niu, Y.; Hussain, T.; Tabassum, H.; Tang, W.; Xu, M.; Ahuja, R. How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy 2021, 86, 106142. [Google Scholar] [CrossRef]
- Zhao, Q.; Stalin, S.; Archer, L.A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142. [Google Scholar] [CrossRef]
- Tai, Z.; Li, Y.; Liu, Y.; Zhao, L.; Ding, Y.; Lu, Z.; Peng, Z.; Meng, L.; Yu, G.; Liu, L. Novel Quasi-Liquid K-Na Alloy as a Promising Dendrite-Free Anode for Rechargeable Potassium Metal Batteries. Adv. Sci. 2021, 8, 2101866. [Google Scholar] [CrossRef]
- Chen, X.; Bai, Y.K.; Shen, X.; Peng, H.J.; Zhang, Q. Sodiophilicity/potassiophilicity chemistry in sodium/potassium metal anodes. J. Energy Chem. 2020, 51, 1–6. [Google Scholar] [CrossRef]
- Xue, L.; Gao, H.; Zhou, W.; Xin, S.; Park, K.; Li, Y.; Goodenough, J.B. Liquid K-Na Alloy Anode Enables Dendrite-Free Potassium Batteries. Adv. Mater. 2016, 28, 9608–9612. [Google Scholar] [CrossRef]
- Guo, X.L.; Ding, Y.; Xue, L.G.; Zhang, L.Y.; Zhang, C.K.; Goodenough, J.B.; Yu, G.H. A Self-Healing Room-Temperature Liquid-Metal Anode for Alkali-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1804649. [Google Scholar] [CrossRef]
- Xue, L.; Zhou, W.; Xin, S.; Gao, H.; Li, Y.; Zhou, A.; Goodenough, J.B. Room-Temperature Liquid Na-K Anode Membranes. Angew. Chem. Int. Ed. 2018, 57, 14184–14187. [Google Scholar] [CrossRef]
- Huang, M.; Xi, B.; Feng, Z.; Wu, F.; Wei, D.; Liu, J.; Feng, J.; Qian, Y.; Xiong, S. New Insights into the Electrochemistry Superiority of Liquid Na-K Alloy in Metal Batteries. Small 2019, 15, 1804916. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Gu, Q.; Nanda, J.; Watt, J.; Mitlin, D. Dendrite-Free Potassium Metal Anodes in a Carbonate Electrolyte. Adv. Mater. 2020, 32, 1906735. [Google Scholar] [CrossRef]
- Hao, H.; Hutter, T.; Boyce, B.L.; Watt, J.; Liu, P.; Mitlin, D. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries. Chem. Rev. 2022, 9, 8053–8125. [Google Scholar] [CrossRef]
- Xiao, N.; McCulloch, W.D.; Wu, Y. Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries. J. Am. Chem. Soc. 2017, 139, 9475–9478. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, J.; Wang, W.; Bayhan, Z.; Alshareef, H.N. Status of rechargeable potassium batteries. Nano Energy 2021, 83, 105792. [Google Scholar] [CrossRef]
- Sun, H.; Liang, P.; Zhu, G.; Hung, W.H.; Li, Y.Y.; Tai, H.C.; Huang, C.L.; Li, J.; Meng, Y.; Angell, M.; et al. A high-performance potassium metal battery using safe ionic liquid electrolyte. Proc. Natl. Acad. Sci. USA 2020, 117, 27847–27853. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, M.; Kong, X.; Huang, W.; Zhang, Q. Recent Advance in Ionic-Liquid-Based Electrolytes for Rechargeable Metal-Ion Batteries. Adv. Sci. 2021, 8, 2004490. [Google Scholar] [CrossRef]
- Liu, P.; Hao, H.; Celio, H.; Cui, J.; Ren, M.; Wang, Y.; Dong, H.; Chowdhury, A.R.; Hutter, T.; Perras, F.A.; et al. Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. Adv. Mater. 2022, 34, 2105855. [Google Scholar] [CrossRef]
- Wei, C.; Tao, Y.; Fei, H.; An, Y.; Tian, Y.; Feng, J.; Qian, Y. Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Mater. 2020, 30, 206–227. [Google Scholar] [CrossRef]
- Nie, G.; Huang, Z.; Ding, S.; Hao, X.; Suo, G.; Han, D.; Xu, Y.; Yang, Y.; Zhao, W.; Su, Q.; et al. SnCo Nanoalloy/Graphene Anode Constructed by Microfluidic-Assisted Nanoprecipitation for Potassium-Ion Batteries. ACS Appl. Nano Mater. 2022, 5, 2616–2625. [Google Scholar] [CrossRef]
- Um, J.; Yoon, S.U.; Kim, H.; Youn, B.S.; Jin, H.-J.; Lim, H.-K.; Yun, Y.S. High-performance solid-solution potassium-ion intercalation mechanism of multilayered turbostratic graphene nanosheets. J. Energy Chem. 2022, 67, 814–823. [Google Scholar] [CrossRef]
- Puglia, M.K.; Malhotra, M.; Chivukula, A.; Kumar, C.V. “Simple-Stir” Heterolayered MoS2/Graphene Nanosheets for Zn–Air Batteries. ACS Appl. Nano Mater. 2021, 4, 10389–10398. [Google Scholar] [CrossRef]
- Zhang, E.; Jia, X.; Wang, B.; Wang, J.; Yu, X.; Lu, B. Carbon Dots@rGO Paper as Freestanding and Flexible Potassium-Ion Batteries Anode. Adv. Sci. 2020, 7, 2000470. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, Y.; Yang, C.; Tie, S.; Nan, J. Nitrogen-doped carbon nanosheet coated multilayer graphite as stabilized anode material of potassium-ion batteries with high performances. Electrochim. Acta 2021, 380, 138254. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Li, L.; Wang, M.; Shui, J.; Xu, M. High-capacity K-storage operational to −40 °C by using RGO as a model anode material. Nano Energy 2020, 67, 104248. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Liu, Z.; Fan, L.; Zhang, Q.; Ding, H.; Wang, L.; Yang, H.; Yu, X.; Lu, B. Nature of Bimetallic Oxide Sb2MoO6/rGO Anode for High-Performance Potassium-Ion Batteries. Adv. Sci. 2019, 6, 1900904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishnuprakash, P.; Nithya, C.; Premalatha, M. Exploration of V2O5 nanorod@rGO heterostructure as potential cathode material for potassium-ion batteries. Electrochim. Acta 2019, 309, 234–241. [Google Scholar] [CrossRef]
- Cheng, Z.B.; Xiao, Z.B.; Pan, H.; Wang, S.Q.; Wang, R.H. Elastic Sandwich-Type rGO-VS2/S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium-Sulfur Batteries with High Energy Density. Adv. Energy Mater. 2018, 8, 1702337. [Google Scholar] [CrossRef]
- Zhu, Y.-H.; Zhang, Q.; Yang, X.; Zhao, E.-Y.; Sun, T.; Zhang, X.-B.; Wang, S.; Yu, X.-Q.; Yan, J.-M.; Jiang, Q. Reconstructed Orthorhombic V2O5 Polyhedra for Fast Ion Diffusion in K-Ion Batteries. Chem 2019, 5, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, M.; Zhang, B.; Wang, B.; Dou, J.; Kong, Z.; Wang, C.; Sun, X.; Qian, Y.; Xu, L. A porous polycrystalline NiCo2Px as a highly efficient host for sulfur cathodes in Li–S batteries. J. Mater. Chem. A 2021, 9, 23149–23156. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, N.; Xie, J.; Li, X.; Zhuo, W.; Wang, H.; Na, J.B.; Li, X.; Yamauchi, Y.; Mai, W. K-Ion Storage Enhancement in Sb2O3/Reduced Graphene Oxide Using Ether-Based Electrolyte. Adv. Energy Mater. 2019, 10, 1903455. [Google Scholar] [CrossRef]
- Li, L.; Zhao, S.; Hu, Z.; Chou, S.L.; Chen, J. Developing better ester- and ether-based electrolytes for potassium-ion batteries. Chem. Sci. 2021, 12, 2345–2356. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Hao, H.; Basu, S.; Feng, X.; Xu, Y.; Boscoboinik, J.A.; Nanda, J.; Watt, J.; Mitlin, D. Stable Potassium Metal Anodes with an All-Aluminum Current Collector through Improved Electrolyte Wetting. Adv. Mater. 2020, 32, 2002908. [Google Scholar] [CrossRef]
- Wang, J.; Yan, W.; Zhang, J. High area capacity and dendrite-free anode constructed by highly potassiophilic Pd/Cu current collector for low-temperature potassium metal battery. Nano Energy 2022, 96, 107131. [Google Scholar] [CrossRef]
- Wang, J.Y.; Yuan, J.C.; Chen, C.H.; Wang, L.L.; Zhai, Z.B.; Fu, Q.R.; Liu, Y.; Dong, L.; Yan, W.; Li, A.J.; et al. Cu3Pt alloy-functionalized Cu mesh as current collector for dendritic-free anodes of potassium metal batteries. Nano Energy 2020, 75, 104914. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, L.; Wang, J.; Xu, X. Reduced Graphene Oxide-Coated Separator to Activate Dead Potassium for Efficient Potassium Batteries. Materials 2022, 15, 5505. https://doi.org/10.3390/ma15165505
Si L, Wang J, Xu X. Reduced Graphene Oxide-Coated Separator to Activate Dead Potassium for Efficient Potassium Batteries. Materials. 2022; 15(16):5505. https://doi.org/10.3390/ma15165505
Chicago/Turabian StyleSi, Liping, Jianyi Wang, and Xijun Xu. 2022. "Reduced Graphene Oxide-Coated Separator to Activate Dead Potassium for Efficient Potassium Batteries" Materials 15, no. 16: 5505. https://doi.org/10.3390/ma15165505
APA StyleSi, L., Wang, J., & Xu, X. (2022). Reduced Graphene Oxide-Coated Separator to Activate Dead Potassium for Efficient Potassium Batteries. Materials, 15(16), 5505. https://doi.org/10.3390/ma15165505