Microwave versus Conventional Sintering of NiTi Alloys Processed by Mechanical Alloying
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanical Alloying
3.2. Sintering Characterization
4. Conclusions
- -
- The density value obtained for the MW sintered sample (3.31 ± 0.02 g/cm3) was closer to human bone (1.8–2.1 g/cm3) than the density value obtained for the CS (3.76 ± 0.06 g/cm3). The results of porosity and pore size for both processes exhibited results within the range of human bone;
- -
- When compared to CS, the overall results obtained from combining MA and MW sintering were very promising, as it allowed for the formation of intermetallic NiTi (B2, R-phase, and B19′) in a very short time and the formation of homogeneous pores;
- -
- Two-step transformations were detected on the heating and cooling curves for both sintering processes, with an overlapping peak on the cooling curves, probably due to the presence of a second phase and the intermediate premartensitic R-phase. No significant differences in the transformation temperatures were detected between the sintering methods;
- -
- The EBSD results show that the MW sample had a higher amount of R-phase and the CS sample had higher amounts of B2 and B19′;
- -
- Through instrumented ultramicrohardness analysis, heterogeneous behavior could be identified based on the curves of both samples, as expected. In MW’s curves, one curve was observed with a significant elastic return. The CS sample showed the highest values of elastic work compared to the MW sample at both maximum forces.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velmurugan, C.; Senthilkumar, V.; Dinesh, S.; Arulkirubakaran, D. Review on phase transformation behavior of NiTi shape memory alloys. Mater. Today Proc. 2018, 5, 14597–14606. [Google Scholar] [CrossRef]
- Farber, E.; Zhu, J.N.; Popovich, A.; Popovich, V. A review of NiTi shape memory alloy as a smart material produced by additive manufacturing. Mater. Today Proc. 2019, 30, 761–767. [Google Scholar] [CrossRef]
- Patel, S.K.; Behera, B.; Swain, B.; Roshan, R.; Sahoo, D.; Behera, A. A review on NiTi alloys for biomedical applications and their biocompatibility. Mater. Today Proc. 2020, 33, 5548–5551. [Google Scholar] [CrossRef]
- Miyazaki, S.; Duerig, T.W.; Melton, K.N. Engineering Aspects of Shape Memory Alloys; Duerig, T.W., Melton, K.N., Stockel, D., Wayman, C.M., Eds.; Butterworth-Heinenmann: Guildford, UK, 1990; pp. 394–413. [Google Scholar] [CrossRef]
- Hartl, D.J.; Lagoudas, D.C. Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2007, 221, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Jani, J.M.; Leary, M.; Subic, A. Shape memory alloys in automotive applications. Appl. Mech. Mater. 2014, 663, 248–253. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Bram, M.; Ahmad-Khanlou, A.; Heckmann, A.; Fuchs, B.; Buchkremer, H.P.; Stöver, D. Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater. Sci. Eng. A 2002, 337, 254–263. [Google Scholar] [CrossRef]
- Elahinia, M.H.; Hashemi, M.; Tabesh, M.; Bhaduri, S.B. Manufacturing and processing of NiTi implants: A review. Prog. Mater. Sci. 2012, 57, 911–946. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. The history and necessity of mechanical alloying. Mech. Alloy. 2015, 2, 13–47. [Google Scholar] [CrossRef]
- Farvizi, M. Challenges of Using Elemental Nickel and Titanium Powders for the Fabrication of Monolithic NiTi Parts. Arch. Metall. Mater. 2017, 62, 1075–1079. [Google Scholar] [CrossRef] [Green Version]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Elahinia, M.; Shayesteh Moghaddam, N.; Taheri Andani, M.; Amerinatanzi, A.; Bimber, B.A.; Hamilton, R.F. Fabrication of NiTi through additive manufacturing: A review. Prog. Mater. Sci. 2016, 83, 630–663. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.L.; Jin, X.F.; Luo, J.M.; Zhong, Z.C. Fabrication and properties of porous NiTi alloys by microwave sintering for biomedical applications. Mater. Lett. 2014, 124, 110–112. [Google Scholar] [CrossRef]
- Xu, J.L.; Bao, L.Z.; Liu, A.H.; Jin, X.F.; Luo, J.M.; Zhong, Z.C.; Zheng, Y. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J. Alloy. Compd. 2015, 645, 137–142. [Google Scholar] [CrossRef]
- Dong, B.; Xiao, Y.; Xu, F.; Hu, X.; Liu, W.; Wu, X. Quantitative tomography of pure magnetic-induced effects on metallics during microwave sintering. J. Alloy. Compd. 2018, 749, 103–112. [Google Scholar] [CrossRef]
- Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloy. Compd. 2010, 494, 175–189. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Ma, Y.; Zhao, Y.; Deng, C.; Peng, X.; Fu, T. Tension-Compression asymmetry of single-crystalline and nanocrystalline NiTi shape memory alloy: An atomic scale study. Mech. Mater. 2020, 145, 103402. [Google Scholar] [CrossRef]
- Kato, H. Four-point bending tests to reveal tension-compression flow stress asymmetry in NiTi shape memory alloy thin plate. Mater. Sci. Eng. A 2019, 755, 258–266. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Z.; Carpenter, K.; Han, J.; Wang, Z.; Li, H. Comparative study on crystallographic orientation, precipitation, phase transformation and mechanical response of Ni-rich NiTi alloy fabricated by WAAM at elevated substrate heating temperatures. Mater. Sci. Eng. A 2021, 800, 140307. [Google Scholar] [CrossRef]
- Bimber, B.A.; Hamilton, R.F.; Keist, J.; Palmer, T.A. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater. Sci. Eng. A 2016, 674, 125–134. [Google Scholar] [CrossRef]
- Šittner, P.; Novák, V. Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals. Int. J. Plast. 2000, 16, 1243–1268. [Google Scholar] [CrossRef]
- Novák, P.; Moravec, H.; Salvetr, P.; Průša, F.; Drahokoupil, J.; Kopeček, J.; Karlík, M.; Kubatík, T.F. Preparation of nitinol by non-conventional powder metallurgy techniques. Mater. Sci. Technol. 2015, 31, 1886–1893. [Google Scholar] [CrossRef]
- Nobuki, T.; Crivello, J.C.; Cuevas, F.; Joubert, J.M. Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties. Int. J. Hydrog. Energy 2019, 44, 10770–10776. [Google Scholar] [CrossRef]
- Nováka, P.; Průša, F.; Nová, K.; Bernatiková, A.; Salvetr, P.; Kopeček, J.; Haušild, P. Application of mechanical alloying in synthesis of intermetallics. Acta Phys. Pol. A 2018, 134, 720–723. [Google Scholar] [CrossRef]
- Rostami, A.; Bagheri, G.A.; Sadrnezhaad, S.K. Microstructure and thermodynamic investigation of Ni–Ti system produced by mechanical alloying. Phys. B Condens. Matter 2019, 552, 214–220. [Google Scholar] [CrossRef]
- Mousavi, T.; Karimzadeh, F.; Abbasi, M.H. Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying. Mater. Sci. Eng. A 2008, 487, 46–51. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.J.; Yang, G.J.; Wang, H.D.; Li, G. Effect of self-propagating high-temperature combustion synthesis on the deposition of NiTi coating by cold spraying using mechanical alloying Ni/Ti powder. Intermetallics 2010, 18, 2154–2158. [Google Scholar] [CrossRef]
- Novák, P.; Moravec, H.; Vojtìch, V.; Knaislová, A.; Školáková, A.; Kubatík, T.F.; Kopeček, J. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering. Mater. Tehnol. 2017, 51, 141–144. [Google Scholar] [CrossRef]
- Kang, D.H.; Kim, J.H.; Park, H.; Yoon, K.H. Characteristics of (Pb 1-x Sr x)TiO3 thin film prepared by a chemical solution processing. Mater. Res. Bull. 2001, 36, 265–276. [Google Scholar] [CrossRef]
- Koorösy, G.; Tomolya, K.; Janovszky, D.; Sólyom, J. Evaluation of XRD analysis of amorphous alloys. Mater. Sci. Forum 2012, 729, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Yerramilli, A.S.; D’Oliveira, A.; Alford, T.L.; Boffito, D.C.; Patience, G.S. Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. Can. J. Chem. Eng. 2020, 98, 1255–1266. [Google Scholar] [CrossRef]
- Neves, F.; Martins, I.; Correia, J.B.; Oliveira, M.; Gaffet, E. Reactive extrusion synthesis of mechanically activated Ti-50Ni powders. Intermetallics 2007, 15, 1623–1631. [Google Scholar] [CrossRef]
- Neves, F.; Braz Fernandes, F.M.; Correia, J.B. Effect of mechanical activation on Ti-50Ni powder blends reactivity. Mater. Sci. Forum 2010, 636–637, 544–549. [Google Scholar] [CrossRef]
- Ye, L.L.; Liu, Z.G.; Raviprasad, K.; Quan, M.X.; Umemoto, M.; Hu, Z.Q. Consolidation of MA amorphous NiTi powders by spark plasma sintering. Mater. Sci. Eng. A 1997, 241, 290–293. [Google Scholar] [CrossRef]
- Xu, J.L.; Bao, L.Z.; Liu, A.H.; Jin, X.J.; Tong, Y.X.; Luo, J.M.; Zhong, Z.; Zheng, Y. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Mater. Sci. Eng. C 2015, 46, 387–393. [Google Scholar] [CrossRef]
- Kaya, M.; Orhan, N.; Tosun, G. The effect of the combustion channels on the compressive strength of porous NiTi shape memory alloy fabricated by SHS as implant material. Curr. Opin. Solid State Mater. Sci. 2010, 14, 21–25. [Google Scholar] [CrossRef]
- Barrabés, M.; Sevilla, P.; Planell, J.A.; Gil, F.J. Mechanical properties of nickel-titanium foams for reconstructive orthopaedics. Mater. Sci. Eng. C 2008, 28, 23–27. [Google Scholar] [CrossRef]
- Parvizi, S.; Hasannaeimi, V.; Saebnoori, E.; Shahrabi, T.; Sadrnezhaad, S.K. Fabrication of porous NiTi alloy via powder metallurgy and its mechanical characterization by shear punch method. Russ. J. Non-Ferr. Met. 2012, 53, 169–175. [Google Scholar] [CrossRef]
- Crone, W.C.; Yahya, A.N.; Perepezko, J.H. Bulk shape memory NiTi with refined grain size synthesized by mechanical alloying. Mater. Sci. Forum 2002, 386-388, 597–602. [Google Scholar] [CrossRef]
- Lu, H.Z.; Ma, H.W.; Luo, X.; Wang, Y.; Wang, J.; Lupoi, R.; Yin, S.; Yang, C. Microstructure, shape memory properties, and in vitro biocompatibility of porous NiTi scaffolds fabricated via selective laser melting. J. Mater. Res. Technol. 2021, 15, 6797–6812. [Google Scholar] [CrossRef]
- Shamsolhodaei, A.; Zarei-Hanzaki, A.; Moghaddam, M. Structural and functional properties of a semi equiatomic NiTi shape memory alloy processed by multi-axial forging. Mater. Sci. Eng. A 2017, 700, 1–9. [Google Scholar] [CrossRef]
- Chu, C.L.; Chung, C.Y.; Lin, P.H. DSC study of the effect of aging temperature on the reverse martensitic transformation in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. Mater. Lett. 2005, 59, 404–407. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Zhang, Y.Q.; Zhao, Y.N.; Liu, S.W.; Hu, L.; Zhao, C.Z. Influence of Ni4Ti3 precipitates on phase transformation of NiTi shape memory alloy. Trans. Nonferrous Met. Soc. China Engl. Ed. 2015, 25, 4063–4071. [Google Scholar] [CrossRef]
- Hu, L.; Jiang, S.; Zhang, Y. Role of severe plastic deformation in suppressing formation of R phase and Ni4Ti3 precipitate of NiTi shape memory alloy. Metals 2017, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.Y.; Zhang, L.N.; Wong, C.T.; Chan, K.C.; Yue, T.M. Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering. Mater. Sci. Eng. A 2011, 528, 6006–6011. [Google Scholar] [CrossRef]
- Khalil-Allafi, J.; Amin-Ahmadi, B. The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys. J. Alloy. Compd. 2009, 487, 363–366. [Google Scholar] [CrossRef]
- Laplanche, G.; Birk, T.; Schneider, S.; Frenzel, J.; Eggeler, G. Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys. Acta Mater. 2017, 127, 143–152. [Google Scholar] [CrossRef]
- Mao, S.C.; Luo, J.F.; Zhang, Z.; Wu, M.H.; Liu, Y.; Han, X.D. EBSD studies of the stress-induced B2-B19′ martensitic transformation in NiTi tubes under uniaxial tension and compression. Acta Mater. 2010, 58, 3357–3366. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, Y.; Young, M.L. Influence of Ni4Ti3 precipitate on pseudoelasticity of austenitic NiTi shape memory alloys deformed at high strain rate. Mater. Sci. Eng. A 2021, 804, 140753. [Google Scholar] [CrossRef]
- Laplanche, G.; Kazuch, A.; Eggeler, G. Processing of NiTi shape memory sheets-Microstructural heterogeneity and evolution of texture. J. Alloy. Compd. 2015, 651, 333–339. [Google Scholar] [CrossRef]
- Weafer, F.M.; Guo, Y.; Bruzzi, M.S. The effect of crystallographic texture on stress-induced martensitic transformation in NiTi: A computational analysis. J. Mech. Behav. Biomed. Mater. 2016, 53, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Pfetzing-Micklich, J.; Wieczorek, N.; Simon, T.; Maaß, B.; Eggeler, G. Direct microstructural evidence for the stress induced formation of martensite during nanonindentation of NiTi. Mater. Sci. Eng. A 2014, 591, 33–37. [Google Scholar] [CrossRef]
- Laplanche, G.; Pfetzing-Micklich, J.; Eggeler, G. Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys. Acta Mater. 2014, 68, 19–31. [Google Scholar] [CrossRef]
Sample | Density (g/cm3) | Porosity (%) | Pore Size (µm) |
---|---|---|---|
MW | 3.31 ± 0.02 | 51.3 ± 0.29 | 120 ± 13.84 |
CS | 3.76 ± 0.06 | 58.2 ± 0.98 | 155 ± 13.01 |
* −200 mesh | ― | 51.9 ± 1.21 | 97 ± 3.51 |
* −120 mesh | ― | 51.5 ± 1.08 | 149 ± 7.30 |
* −60 mesh | ― | 50.1 ± 0.95 | 238 ± 7.10 |
* −45 mesh | ― | 52.9 ± 1.13 | 294 ± 9.95 |
** 0 wt.% | 5.10 ± 0.20 | 22.0 ± 0.31 | ≈26 ± 2.76 |
** 10 wt.% | 3.64 ± 0.02 | 42.0 ± 0.59 | ≈120 ± 5.52 |
** 20 wt.% | 3.20 ± 0.02 | 51.0 ± 0.59 | ≈151 ± 5.10 |
** 30 wt.% | 2.40 ± 0.60 | 64.0 ± 1.18 | ≈178 ± 2.50 |
Sample | Cooling | ||||||||
---|---|---|---|---|---|---|---|---|---|
B2 → R | B2 → B19′ | R → B19′ | |||||||
Rs | Rp | Rf | M′s | M′p | M′f | Ms | Mp | Mf | |
CS | 25.6 | 20.7 | 17.8 | - | - | - | 11.7 | 7.4 | 2.9 |
MW | 24.9 | 19.9 | 17.7 | - | - | - | 11.5 | 7.4 | 3.4 |
Sample | Heating | ||||||||
B19′→ R | B19′→ B2 | R→ B2 | |||||||
R′s | R′p | R′f | A′s | A′p | A′f | As | Ap | Af | |
CS | 25.8 | * | * | * | * | * | * | * | 58.3 |
MW | 27.4 | * | * | * | * | * | * | * | 57.6 |
Enthalpy (mJ/g) | |||||||||
Sample | First Peak on Cooling | Second Peak on Cooling | First Peak on Heating | Second Peak on Heating | |||||
CS | 1.329 | 0.856 | 11.891 | ||||||
MW | 0.279 | 0.769 | 11.164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, R.d.S.; Oliveira, R.V.d.; Rodrigues, P.F.; Mascarenhas, J.; Neves, F.C.F.P.; Paula, A.d.S. Microwave versus Conventional Sintering of NiTi Alloys Processed by Mechanical Alloying. Materials 2022, 15, 5506. https://doi.org/10.3390/ma15165506
Teixeira RdS, Oliveira RVd, Rodrigues PF, Mascarenhas J, Neves FCFP, Paula AdS. Microwave versus Conventional Sintering of NiTi Alloys Processed by Mechanical Alloying. Materials. 2022; 15(16):5506. https://doi.org/10.3390/ma15165506
Chicago/Turabian StyleTeixeira, Rodolfo da Silva, Rebeca Vieira de Oliveira, Patrícia Freitas Rodrigues, João Mascarenhas, Filipe Carlos Figueiredo Pereira Neves, and Andersan dos Santos Paula. 2022. "Microwave versus Conventional Sintering of NiTi Alloys Processed by Mechanical Alloying" Materials 15, no. 16: 5506. https://doi.org/10.3390/ma15165506
APA StyleTeixeira, R. d. S., Oliveira, R. V. d., Rodrigues, P. F., Mascarenhas, J., Neves, F. C. F. P., & Paula, A. d. S. (2022). Microwave versus Conventional Sintering of NiTi Alloys Processed by Mechanical Alloying. Materials, 15(16), 5506. https://doi.org/10.3390/ma15165506