Enhancing Resin Cement Adhesion to Zirconia by Oxygen Plasma-Aided Silicatization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Surface Micromorphology
2.3. Hydrophilicity Test
2.4. X-ray Photoelectron Spectroscopy (XPS) Analysis
2.5. Shear Bond Strength (SBS) Test
2.6. Statistical Analysis
3. Results
3.1. Surface Micromorphology
3.2. Hydrophilicity Test
3.3. XPS Analysis
3.4. SBS Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarone, F.; Russo, S.; Sorrentino, R. From porcelain-fused-to-metal to zirconia: Clinical and experimental considerations. Dent. Mater. 2011, 27, 83–96. [Google Scholar] [CrossRef]
- Miyazaki, T.; Nakamura, T.; Matsumura, H.; Ban, S.; Kobayashi, T. Current status of zirconia restoration. J. Prosthodont. Res. 2013, 57, 236–261. [Google Scholar] [CrossRef] [PubMed]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar] [CrossRef]
- Laumbacher, H.; Strasser, T.; Knüttel, H.; Rosentritt, M. Long-term clinical performance and complications of zirconia-based tooth-and implant-supported fixed prosthodontic restorations: A summary of systematic reviews. J. Dent. 2021, 111, 103723. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Comba, A.; Ferrero, G.; Italia, E.; Michelotto Tempesta, R.; Paolone, G.; Mazzoni, A.; Breschi, L.; Scotti, N. External gap progression after cyclic fatigue of adhesive overlays and crowns made with high translucency zirconia or lithium silicate. J. Esthet. Restor. Dent. 2022, 34, 557–564. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, Y.K.; Kim, K.-H.; Kwon, T.-Y. Shear bond strengths of various luting cements to zirconia ceramic: Surface chemical aspects. J. Dent. 2011, 39, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Dérand, P.; Derand, T. Bond strength of luting cements to zirconium oxide ceramics. Int. J. Prosthodont. 2000, 13, 131–135. [Google Scholar] [PubMed]
- Nejatidanesh, F.; Savabi, O.; Jabbari, E. Effect of surface treatment on the retention of implant-supported zirconia restorations over short abutments. J. Prosthet. Dent. 2014, 112, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, L.; Ulmer, P.; Reusser, E.; Hammerle, C.H. Surface characterization of dental Y-TZP ceramic after air abrasion treatment. J. Dent. 2012, 40, 723–735. [Google Scholar] [CrossRef]
- Chuang, S.F.; Kang, L.L.; Liu, Y.C.; Lin, J.C.; Wang, C.C.; Chen, H.M.; Tai, C.K. Effects of silane- and MDP-based primers application orders on zirconia-resin adhesion-A ToF-SIMS study. Dent. Mater. 2017, 33, 923–933. [Google Scholar] [CrossRef]
- Ye, S.; Lin, J.C.; Kang, L.L.; Li, C.L.; Hou, S.S.; Lee, T.L.; Chuang, S.F. Investigations of silane-MDP interaction in universal adhesives: A ToF-SIMS analysis. Dent. Mater. 2022, 38, 183–193. [Google Scholar] [CrossRef]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical interaction mechanism of 10-MDP with zirconia. Sci. Rep. 2017, 7, 45563. [Google Scholar] [CrossRef]
- Xie, H.; Li, Q.; Zhang, F.; Lu, Y.; Tay, F.R.; Qian, M.; Chen, C. Comparison of resin bonding improvements to zirconia between one-bottle universal adhesives and tribochemical silica coating, which is better? Dent. Mater. 2016, 32, 403–411. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Lu, Z.; Qian, M.; Xie, H.; Tay, F. The effects of water on degradation of the zirconia-resin bond. J. Dent. 2017, 64, 23–29. [Google Scholar] [CrossRef]
- Yang, L.; Chen, B.; Xie, H.; Chen, Y.; Chen, Y.; Chen, C. Durability of resin bonding to zirconia using products containing 10-methacryloyloxydecyl dihydrogen phosphate. J. Adhes. Dent. 2018, 20, 279–287. [Google Scholar]
- Aboushelib, M.N.; Kleverlaan, C.J.; Feilzer, A.J. Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials. J. Prosthet. Dent. 2007, 98, 379–388. [Google Scholar] [CrossRef]
- Tzanakakis, E.G.; Tzoutzas, I.G.; Koidis, P.T. Is there a potential for durable adhesion to zirconia restorations? A systematic review. J. Prosthet. Dent. 2016, 115, 9–19. [Google Scholar] [CrossRef]
- Pilo, R.; Dimitriadi, M.; Palaghia, A.; Eliades, G. Effect of tribochemical treatments and silane reactivity on resin bonding to zirconia. Dent. Mater. 2018, 34, 306–316. [Google Scholar] [CrossRef]
- Nagaoka, N.; Yoshihara, K.; Tamada, Y.; Yoshida, Y.; Meerbeek, B.V. Ultrastructure and bonding properties of tribochemical silica-coated zirconia. Dent. Mater. J. 2019, 38, 107–113. [Google Scholar] [CrossRef]
- May, L.G.; Passos, S.P.; Capelli, D.B.; Ozcan, M.; Bottino, M.A.; Valandro, L.F. Effect of silica coating combined to a MDP-based primer on the resin bond to Y-TZP ceramic. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 95, 69–74. [Google Scholar] [CrossRef]
- Heikkinen, T.T.; Lassila, L.V.J.; Matinlinna, J.P.; Vallittu, P.K. Thermocycling effects on resin bond to silicatized and silanized zirconia. J. Adhes. Sci. Technol. 2009, 23, 1043–1051. [Google Scholar] [CrossRef]
- Inokoshi, M.; Kameyama, A.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Durable bonding to mechanically and/or chemically pre-treated dental zirconia. J. Dent. 2013, 41, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.K.; Chen, J.; Wang, L.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef]
- Valverde, G.B.; Coelho, P.G.; Janal, M.N.; Lorenzoni, F.C.; Carvalho, R.M.; Thompson, V.P.; Weltemann, K.D.; Silva, N.R. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment. J. Dent. 2013, 41, 51–59. [Google Scholar] [CrossRef]
- Ito, Y.; Okawa, T.; Fukumoto, T.; Tsurumi, A.; Tatsuta, M.; Fujii, T.; Tanaka, J.; Tanaka, M. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement. J. Prosthodont. Res. 2016, 60, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Q.; Yu, Q.S.; Wang, Y. Nonthermal atmospheric plasmas in dental restoration. J. Dent. Res. 2016, 95, 496–505. [Google Scholar] [CrossRef]
- Jin, Y.; Ren, C.; Yang, L.; Zhang, J.; Wang, D. Atmospheric pressure plasma jet in Ar and O2/Ar mixtures: Properties and high performance for surface cleaning. Plasma Sci. Technol. 2013, 15, 1203–1208. [Google Scholar] [CrossRef]
- Barquete, C.G.; Simao, R.A.; Almeida Fonseca, S.S.; Elias, A.B.; Antunes Guimaraes, J.G.; Herrera, E.Z.; Mello, A.; Moreira da Silva, E. Effect of cementation delay on bonding of self-adhesive resin cement to yttria-stabilized tetragonal zirconia polycrystal ceramic treated with nonthermal argon plasma. J. Prosthet. Dent. 2021, 125, 693.e1–693.e7. [Google Scholar] [CrossRef]
- Liu, Y.C.; Hsieh, J.P.; Chen, Y.C.; Kang, L.L.; Hwang, C.S.; Chuang, S.F. Promoting porcelain-zirconia bonding using different atmospheric pressure gas plasmas. Dent. Mater. 2018, 34, 1188–1198. [Google Scholar] [CrossRef]
- Kim, D.S.; Ahn, J.J.; Bae, E.B.; Kim, G.C.; Jeong, C.M.; Huh, J.B.; Lee, S.H. Influence of non-thermal atmospheric pressure plasma treatment on shear bond strength between Y-TZP and self-adhesive resin cement. Materials 2019, 12, 3321. [Google Scholar] [CrossRef]
- Vilas Boas Fernandes Junior, V.; Barbosa Dantas, D.C.; Bresciani, E.; Rocha Lima Huhtala, M.F. Evaluation of the bond strength and characteristics of zirconia after different surface treatments. J. Prosthet. Dent. 2018, 120, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Matinlinna, J.P.; Heikkinen, T.; Ozcan, M.; Lassila, L.V.; Vallittu, P.K. Evaluation of resin adhesion to zirconia ceramic using some organosilanes. Dent. Mater. 2006, 22, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Babayan, S.E.; Jeong, J.Y.; Schütze, A.; Tu, V.J.; Moravej, M.; Selwyn, G.S.; Hicks, R.F. Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet. Plasma Sources Sci. Technol. 2001, 10, 573–578. [Google Scholar] [CrossRef]
- Wang, Y.M.; Li, Y.S.; Mitchell, K.A.R. LEED crystallographic analysis for the structure formed by 2 ML of O at the Zr(0001) surface. Surf. Sci. 1997, 380, 540–547. [Google Scholar] [CrossRef]
- Bachiller-Baeza, B.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. Interaction of carbon dioxide with the surface of zirconia polymorphs. Langmuir 1998, 14, 3556–3564. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Lima, R.B.W.; Barreto, S.C.; Hajhamid, B.; de Souza, G.M.; de Goes, M.F. Effect of cleaning protocol on silica deposition and silica-mediated bonding to Y-TZP. Dent. Mater. 2019, 35, 1603–1613. [Google Scholar] [CrossRef]
- Shen, C.; Oh Ws Williams, J.R. Effect of post-silanization drying on the bond strength of composite to ceramic. J. Prosthet. Dent. 2004, 91, 453–458. [Google Scholar] [CrossRef]
- Tokunaga, E.; Nagaoka, N.; Maruo, Y.; Yoshihara, K.; Nishigawa, G.; Minagi, S. Phosphate group adsorption capacity of inorganic elements affects bond strength between CAD/CAM composite block and luting agent. Dent. Mater. J. 2021, 40, 288–296. [Google Scholar] [CrossRef]
- Lung, C.Y.; Botelho, M.G.; Heinonen, M.; Matinlinna, J.P. Resin zirconia bonding promotion with some novel coupling agents. Dent. Mater. 2012, 28, 863–872. [Google Scholar] [CrossRef]
- Turner, M.R.; Duguet, E.; Labrugère, C. Characterization of silane-modified ZrO2 powder surfaces. Surf. Interface Anal. 1997, 25, 917–923. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Sky Driver, M.; Caruso, A.N.; Yu, Q.; Wang, Y. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush. Dent. Mater. 2013, 29, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Chuang, S.-F.; Hou, S.-S.; Lin, J.-C.; Kang, L.-L.; Chen, Y.-C. Interaction of silane with 10-MDP on affecting surface chemistry and resin bonding of zirconia. Dent. Mater. 2022, 38, 715–724. [Google Scholar] [CrossRef]
- Mazzitelli, C.; Maravic, T.; Mancuso, E.; Josic, U.; Generali, L.; Comba, A.; Mazzoni, A.; Breschi, L. Influence of the activation mode on long-term bond strength and endogenous enzymatic activity of dual-cure resin cements. Clin. Oral Investig. 2022, 26, 1683–1694. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, B.; Meng, H.; Zhang, H.; He, F.; Xie, H.; Chen, C. Bond durability when applying phosphate ester monomer-containing primers vs. self-adhesive resin cements to zirconia: Evaluation after different aging conditions. J. Prosthodont. Res. 2020, 64, 193–201. [Google Scholar] [CrossRef]
Group | Zr | Y | Al | Si | P | O | C | O/C |
---|---|---|---|---|---|---|---|---|
AA | 10.6 | 0.9 | 11.3 | 1.2 | - | 58.1 | 17.8 | 3.3 |
AA-OP | 9.5 | 0.5 | 12.9 | 4.1 | - | 65.5 | 7.5 | 8.7 |
AA-S | 0.1 | - | - | 3.2 | - | 16.3 | 80.4 | 0.2 |
AA-OP-S | - | - | - | 4.1 | - | 24.4 | 71.5 | 0.3 |
AA-M | - | - | - | 8.7 | 3.2 | 25.6 | 60.9 | 0.4 |
AA-OP-M | - | - | - | 13.1 | 2.1 | 34.9 | 49.8 | 0.7 |
TSC | 3.5 | 4.6 | - | 16.8 | - | 62.4 | 12.7 | 4.9 |
TSC-OP | 3.1 | 5.4 | - | 17.6 | - | 55.5 | 18.5 | 3.0 |
TSC-S | 0.5 | - | - | 17.7 | - | 33.0 | 48.8 | 0.7 |
TSC-OP-S | 1.5 | - | 2.3 | 18.5 | - | 47.5 | 30.2 | 1.6 |
Group | Si 1 | SiO 1 | Si2O3 1 | SiO2 1 | SiO4 2 |
---|---|---|---|---|---|
AA-S | 27.7 | 72.3 | |||
AA-OP-S | 30.9 | 69.1 | |||
AA-M | 36.2 | 62.4 | 1.4 | ||
AA-OP-M | 6.5 | 11.8 | 74.6 | 7.1 | 10.2 |
TSC | 5.5 | 17.4 | 62.8 | 14.3 | |
TSC-OP | 11.0 | 22.3 | 51.1 | 15.6 | |
TSC-S | 75.7 | 14.1 | 10.2 | ||
TSC-OP-S | 33.6 | 42 | 24.4 |
Group | x | Significant Difference between Non-OP and OP | ||||
---|---|---|---|---|---|---|
Nil | OP | |||||
T0 | T6000 | T0 | T6000 | T0 | T6000 | |
AA-x | 6.2 (1.5) Aa | 0 (0) Ab | 13.3 (3.5) Ba | 2.6 (0.9) Bb | * | * |
AA-x-S | 11.5 (1.8) Ba | 3.3 (1.9) Bb | 17.3 (1.8) Ca | 16.7 (3.1) Da | * | * |
AA-x-M | 20.6 (1.7) Da | 13.3 (1.2) Cb | 26.5 (4.0) Ea | 14.7 (2.0) Cb | * | |
TSC-x-S | 19.8 (2.0) Da | 17.1 (2.3) Db | 25.8 (2.5) Ea | 24.2 (3.4) Ea | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, L.-L.; Chuang, S.-F.; Li, C.-L.; Lin, J.-C.; Lai, T.-W.; Wang, C.-C. Enhancing Resin Cement Adhesion to Zirconia by Oxygen Plasma-Aided Silicatization. Materials 2022, 15, 5568. https://doi.org/10.3390/ma15165568
Kang L-L, Chuang S-F, Li C-L, Lin J-C, Lai T-W, Wang C-C. Enhancing Resin Cement Adhesion to Zirconia by Oxygen Plasma-Aided Silicatization. Materials. 2022; 15(16):5568. https://doi.org/10.3390/ma15165568
Chicago/Turabian StyleKang, Li-Li, Shu-Fen Chuang, Chia-Ling Li, Jui-Che Lin, Ting-Wen Lai, and Ching-Cheng Wang. 2022. "Enhancing Resin Cement Adhesion to Zirconia by Oxygen Plasma-Aided Silicatization" Materials 15, no. 16: 5568. https://doi.org/10.3390/ma15165568
APA StyleKang, L. -L., Chuang, S. -F., Li, C. -L., Lin, J. -C., Lai, T. -W., & Wang, C. -C. (2022). Enhancing Resin Cement Adhesion to Zirconia by Oxygen Plasma-Aided Silicatization. Materials, 15(16), 5568. https://doi.org/10.3390/ma15165568