The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of the Materials
2.3. Materials’ Preparation and Board Manufacturing
2.4. Determination of Boards Properties
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirski, R.; Derkowski, A.; Dziurka, D.; Dukarska, D.; Czarnecki, R. Effects of a Chipboard Structure on Its Physical and Mechanical Properties. Materials 2019, 12, 3777. [Google Scholar] [CrossRef]
- Ratajczak, E.; Szostak, A.; Bidzinska, G.; Leszczyszyn, E. Market in Wood By-Products in Poland and Their Flows in the Wood Sector. Drewno Prace Naukowe Doniesienia Komunikaty 2018, 61. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Mikołajczak, E. The Influence of Selected Factors on the Share of By-Products in Sawmill Processing. Ann. Wars. Univ. Life Sci. SGGW. For. Wood Technol. 2018, 104, 540–548. [Google Scholar]
- Fregoso-Madueño, J.N.; Goche-Télles, J.R.; Rutiaga-Quiñones, J.G.; González-Laredo, R.F.; Bocanegra-Salazar, M.; Chávez-Simental, J.A. Alternative Uses of Sawmill Industry Waste. Revista Chapingo Serie Ciencias Forestales y del Ambiente 2017, 23, 243–260. [Google Scholar] [CrossRef]
- Wieruszewski, M.; Górna, A.; Mydlarz, K.; Adamowicz, K. Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material. Energies 2022, 15, 4897. [Google Scholar] [CrossRef]
- Simal Alves, L.; da Silva, S.A.M.; dos Anjos Azambuja, M.; Varanda, L.D.; Christóforo, A.L.; Lahr, F.A.R. Particleboard Produced with Sawmill Waste of Different Wood Species. In Advanced Materials Research; Trans Tech Publications Ltd.: Stäfa, Switzerland, 2014; Volume 884, pp. 689–693. [Google Scholar]
- Saal, U.; Weimar, H.; Mantau, U. Wood Processing Residues. Biorefineries 2017, 166, 27–41. [Google Scholar]
- Mirski, R.; Kawalerczyk, J.; Dziurka, D. Properties of particleboards intended for the production of countertops. In Proceedings of the Network for Wood Science and Engineering, Tallin, Estonia, 2–3 October 2018. [Google Scholar]
- Mirski, R.; Dukarska, D.; Derkowski, A.; Czarnecki, R.; Dziurka, D. By-Products of Sawmill Industry as Raw Materials for Manufacture of Chip-Sawdust Boards. J. Build. Eng. 2020, 32, 101460. [Google Scholar] [CrossRef]
- Mirski, R.; Derkowski, A.; Dziurka, D.; Wieruszewski, M.; Dukarska, D. Effects of Chip Type on the Properties of Chip–Sawdust Boards Glued with Polymeric Diphenyl Methane Diisocyanate. Materials 2020, 13, 1329. [Google Scholar] [CrossRef]
- Pásztory, Z.; Mohácsiné, I.R.; Börcsök, Z. Investigation of Thermal Insulation Panels Made of Black Locust Tree Bark. Constr. Build. Mater. 2017, 147, 733–735. [Google Scholar] [CrossRef]
- Szwajkowska-Michalek, L.; Rogozinski, T.; Stuper-Szablewska, K. Zawartość Steroli w Korze Po Procesie Wysokotemperaturowego Suszenia Tarcicy w Komorowych Suszarkach Konwekcyjnych. Sylwan 2019, 163, 610–616. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Siuda, J.; Kuliński, M.; Dziurka, D.; Mirski, R. Wykorzystanie Kory Jako Wypełniacza Żywic w Produkcji Sklejki. Biuletyn Informacyjny Ośrodka Badawczo-Rozwojowego Przemysłu Płyt Drewnopochodnych w Czarnej Wodzie 2020, 61, 188–197. [Google Scholar] [CrossRef]
- Turgut Sahin, H.; Burak Arslan, M. Weathering Performance of Particleboards Manufactured from Blends of Forest Residues with Red Pine (Pinus brutia) Wood. Maderas Ciencia y Tecnología 2011, 13, 337–346. [Google Scholar] [CrossRef]
- Mirski, R.; Kawalerczyk, J.; Dziurka, D.; Wieruszewski, M.; Trociński, A. Effects of Using Bark Particles with Various Dimensions as a Filler for Urea-Formaldehyde Resin in Plywood. BioResources 2020, 15, 1692–1701. [Google Scholar]
- Bekhta, P.; Sedliačik, J.; Noshchenko, G.; Kačík, F.; Bekhta, N. Characteristics of Beech Bark and Its Effect on Properties of UF Adhesive and on Bonding Strength and Formaldehyde Emission of Plywood Panels. Eur. J. Wood Wood Prod. 2021, 79, 423–433. [Google Scholar] [CrossRef]
- Réh, R.; Krišťák, Ľ.; Sedliačik, J.; Bekhta, P.; Božiková, M.; Kunecová, D.; Vozárová, V.; Tudor, E.M.; Antov, P.; Savov, V. Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Formaldehyde Adhesives for Plywood Manufacturing. Polymers 2021, 13, 511. [Google Scholar] [CrossRef]
- Réh, R.; Igaz, R.; Krišťák, Ľ.; Ružiak, I.; Gajtanska, M.; Božíková, M.; Kučerka, M. Functionality of Beech Bark in Adhesive Mixtures Used in Plywood and Its Effect on the Stability Associated with Material Systems. Materials 2019, 12, 1298. [Google Scholar] [CrossRef]
- Blanchet, P.; Cloutier, A.; Riedl, B. Particleboard Made from Hammer Milled Black Spruce Bark Residues. Wood Sci. Technol. 2000, 34, 11–19. [Google Scholar] [CrossRef]
- Medved, S.; Gajsek, U.; Tudor, E.M.; Barbu, M.C.; Antonovic, A. Efficiency of Bark for Reduction of Formaldehyde Emission from Particleboards. Wood Res. 2019, 64, 307–315. [Google Scholar]
- Mahieu, A.; Alix, S.; Leblanc, N. Properties of Particleboards Made of Agricultural By-Products with a Classical Binder or Self-Bound. Ind. Crops Prod. 2019, 130, 371–379. [Google Scholar] [CrossRef]
- Pasztory, Z.; Mohácsiné, I.R.; Gorbacheva, G.; Börcsök, Z. The Utilization of Tree Bark. BioResources 2016, 11, 7859–7888. [Google Scholar] [CrossRef]
- Pedieu, R.; Riedl, B.; Pichette, A. Properties of Mixed Particleboards Based on White Birch (Betula Papyrifera) Inner Bark Particles and Reinforced with Wood Fibres. Eur. J. Wood Wood Prod. 2009, 67, 95–101. [Google Scholar] [CrossRef]
- Tudor, E.M.; Barbu, M.C.; Petutschnigg, A.; Réh, R.; Krišťák, Ľ. Analysis of Larch-Bark Capacity for Formaldehyde Removal in Wood Adhesives. Int. J. Environ. Res. Public Health 2020, 17, 764. [Google Scholar] [CrossRef]
- Tudor, E.M.; Dettendorfer, A.; Kain, G.; Barbu, M.C.; Réh, R.; Krišťák, Ľ. Sound-Absorption Coefficient of Bark-Based Insulation Panels. Polymers 2020, 12, 1012. [Google Scholar] [CrossRef]
- EN 323; Wood-Based Panels-Determination of Density. European Committee for Standardization: Brussels, Belgium, 2001.
- EN 310; Wood-Based Panels-Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1999.
- EN 319; Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 317; Particleboards and Fibreboards–Determination of Swelling in Thickness after Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1998.
- EN 120; Wood-Based Panels-Determination of Formaldehyde Release-Extraction Method (Called Perforator Method). CEN, European Committee for Standardization: Brusseles, Belgium, 2011.
- ISO 12460-3; Wood-Based Panels—Determination of Formaldehyde Release—Part 3: Gas Analysis Method. International Organization for Standardization: Geneva, Switzerland, 2020.
- Medved, S.; Resnik, J. Influence of Beech Particle Size Used in Surface Layer on Bending Strength of Three-Layer Particleboard. Zbornik Gozdarstva in Lesarstva 2003, 72, 197–207. [Google Scholar]
- Mirski, R.; Kawalerczyk, J.; Dziurka, D.; Siuda, J.; Wieruszewski, M. The Application of Oak Bark Powder as a Filler for Melamine-Urea-Formaldehyde Adhesive in Plywood Manufacturing. Forests 2020, 11, 1249. [Google Scholar] [CrossRef]
- Baharoğlu, M.; Nemli, G.; Sarı, B.; Birtürk, T.; Bardak, S. Effects of Anatomical and Chemical Properties of Wood on the Quality of Particleboard. Compos. Part B Eng. 2013, 52, 282–285. [Google Scholar] [CrossRef]
- Hänsel, A.; Sandak, J.; Sandak, A.; Mai, J.; Niemz, P. Selected Previous Findings on the Factors Influencing the Gluing Quality of Solid Wood Products in Timber Construction and Possible Developments: A Review. Wood Mater. Sci. Eng. 2022, 17, 230–241. [Google Scholar] [CrossRef]
- Hse, C.-Y.; Kuo, M. Influence of Extractives on Wood Gluing and Finishing-a Review. For. Prod. J. 1988, 381, 52–56. [Google Scholar]
- Medved, S.; Antonović, A.; Jambreković, V. Impact of Resin Content on Swelling Pressure of Three Layer Perticleboard Bonded with Urea-Formaldehyde Adhesive. Drvna Industrija 2011, 62, 37–42. [Google Scholar] [CrossRef]
- Prestifilippo, M.; Pizzi, A.; Norback, H.; Lavisci, P. Low Addition of Melamine Salts for Improved UF Adhesives Water Resistance. Holz als Roh- und Werkstoff 1996, 54, 393–398. [Google Scholar] [CrossRef]
- Antov, P.; Savov, V.; Neykov, N. Reduction of Formaldehyde Emission from Engineered Wood Panels by Formaldehyde Scavengers—A Review. In Proceedings of the 13th International Scientific Conference Wood EMA 2020 and 31st International Scientific Conference ICWST, Vinkovci, Croatia, 28–30 September 2020. [Google Scholar]
- Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M.A.R.; Iswanto, A.H.; Reh, R.; Sedliacik, J.; Savov, V.; Taghiyari, H.R.; Papadopoulos, A.N. Recent Progress in Ultra-Low Formaldehyde Emitting Adhesive Systems and Formaldehyde Scavengers in Wood-Based Panels: A Review. Wood Mater. Sci. Eng. 2022, 1–20. [Google Scholar] [CrossRef]
- Gumowska, A.; Kowaluk, G.; Labidi, J.; Robles, E. Barrier Properties of Cellulose Nanofiber Film as an External Layer of Particleboard. Clean Technol. Environ. Policy 2019, 21, 2073–2079. [Google Scholar] [CrossRef]
- Jahanshaei, S.; Tabarsa, T.; Asghari, J. Eco-friendly Tannin-phenol Formaldehyde Resin for Producing Wood Composites. Pigment Resin Technol. 2012, 41, 296–301. [Google Scholar] [CrossRef]
- Tanase, C.; Mocan, A.; Coșarcă, S.; Gavan, A.; Nicolescu, A.; Gheldiu, A.-M.; Vodnar, D.C.; Muntean, D.-L.; Crișan, O. Biological and Chemical Insights of Beech (Fagus Sylvatica L.) Bark: A Source of Bioactive Compounds with Functional Properties. Antioxidants 2019, 8, 417. [Google Scholar] [CrossRef]
- Pásztory, Z.; Halász, K.; Börcsök, Z. Formaldehyde Adsorption–Desorption of Poplar Bark. Bull. Environ. Contam. Toxicol. 2019, 103, 745–749. [Google Scholar] [CrossRef]
Material | Length (mm) | Width (mm) | Thickness (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Min. | Max. | Mean | Min. | Max. | Mean | Min. | Max. | |
Wood chips | 33.9 (6.3) | 18.4 | 54.7 | 14.5 (4.2) | 7.3 | 28.7 | 5.1 (1.3) | 1.9 | 9.9 |
Variant Label | Share of Components in Boards (%) | ||
---|---|---|---|
Chips | Bark | Sawdust | |
A | 70 | 30 | 0 |
B | 60 | 40 | 0 |
C | 50 | 50 | 0 |
D | 70 | 0 | 30 |
E | 100 | 0 | 0 |
Variant Label | Density of Boards (kg/m3) | ||
---|---|---|---|
Mean | Min. | Max. | |
A | 551 (12.6) b | 538 | 565 |
B | 548 (11.4) b | 537 | 561 |
C | 549 (10.6) b | 538 | 560 |
D | 552 (11.1) b | 541 | 563 |
E | 531 (10.3) a | 516 | 551 |
Variant Label | Thickness Swelling (%) | Water Absorption (%) | ||
---|---|---|---|---|
2 h | 24 h | 2 h | 24 h | |
A | 16.3 (0.6) b | 18.9 (0.4) b | 92.9 (0.8) b | 93.7 (0.6) b |
B | 15.7 (0.9) ab | 18.5 (0.7) ab | 91.7 (0.9) ab | 92.9 (0.7) ab |
C | 15.9 (1.1) ab | 18.4 (0.9) ab | 91.3 (1.3) ab | 93.2 (1.1) ab |
D | 17.2 (0.4) c | 19.8 (0.6) c | 94.6 (0.6) c | 95.9 (1.0) c |
E | 15.2 (0.7) a | 17.6 (0.6) a | 87.5 (2.4) a | 91.2 (1.3) a |
Variant Label | Formaldehyde Content (mg/100 g) | Formaldehyde Emission (mg/m2 h) |
---|---|---|
A | 3.3 (0.3) a | 2.1 (0.3) a |
B | 5.1 (0.2) c | 4.6 (0.3) c |
C | 5.4 (0.3) c | 4.4 (0.2) c |
D | 4.3 (0.2) b | 3.1 (0.3) b |
E | 3.1 (0.4) a | 2.3 (0.2) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirski, R.; Derkowski, A.; Kawalerczyk, J.; Dziurka, D.; Walkiewicz, J. The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process. Materials 2022, 15, 5731. https://doi.org/10.3390/ma15165731
Mirski R, Derkowski A, Kawalerczyk J, Dziurka D, Walkiewicz J. The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process. Materials. 2022; 15(16):5731. https://doi.org/10.3390/ma15165731
Chicago/Turabian StyleMirski, Radosław, Adam Derkowski, Jakub Kawalerczyk, Dorota Dziurka, and Joanna Walkiewicz. 2022. "The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process" Materials 15, no. 16: 5731. https://doi.org/10.3390/ma15165731
APA StyleMirski, R., Derkowski, A., Kawalerczyk, J., Dziurka, D., & Walkiewicz, J. (2022). The Possibility of Using Pine Bark Particles in the Chipboard Manufacturing Process. Materials, 15(16), 5731. https://doi.org/10.3390/ma15165731