Crystallographic Features of Phase Transformations during the Continuous Cooling of a Ti6Al4V Alloy from the Single-Phase β-Region
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- between the α-laths of the same orientation in one α-colony, 0° deviation from BOR;
- between the α-laths of the same orientation in one α-colony, deviation from BOR at one of the angles close to 22, 30, 35 and 43°;
- at a high-angle boundary (mainly α1/α2-misorientation close to 60°), 0° deviation from BOR with both α1 and α2;
- at a high-angle boundary (mainly α1/α2-misorientation close to 60°), 0° deviation from BOR with α1 and deviation from BOR at one of the angles close to 22, 30, 35 and 43° with α2;
- at a high-angle boundary (mainly α1/α2-misorientation close to 60°), deviation from BOR at one of the angles close to 22, 30, 35 and 43° with both α1 and α2.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veiga, C.; Loureiro, A.J.R.; Davim, J.P. Proprties and Applications of Titanium Alloys. Rev. Adv. Mater. Sci. 2012, 32, 133–148. [Google Scholar]
- Roy, S.; Kumar, R.; Anurag; Sahoo, A.K.; Das, R.K. A Brief Review on Machining of Ti-6Al-4V under Different Cooling Environments. IOP Conf. Ser. Mater. Sci. Eng. 2018, 455, 012101. [Google Scholar] [CrossRef]
- Chai, L.; Xia, J.; Murty, K.L.; Gu, X.; Fan, J.; Yao, Z. Revealing Microstructural, Textural, and Hardness Evolution of Ti–6Al–4V Sheet Cooled from Sub β-Transus Temperature at Different Rates. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2022, 53, 3179–3193. [Google Scholar] [CrossRef]
- Ding, R.; Guo, Z.X.; Wilson, A. Microstructural Evolution of a Ti-6Al-4V Alloy during Thermomechanical Processing. Mater. Sci. Eng. A 2002, 327, 233–245. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive Manufacturing of Ti6Al4V Alloy: A Review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Burgers, W.G. On the Process of Transition of the Cubic-Body-Centered Modification into the Hexagonal-Close-Packed Modification of Zirconium. Physica 1934, 1, 561–586. [Google Scholar] [CrossRef]
- Gey, N.; Humbert, M. Characterization of the Variant Selection Occurring during the A→β→α Phase Transformations of a Cold Rolled Titanium Sheet. Acta Mater. 2002, 50, 277–287. [Google Scholar] [CrossRef]
- Qiu, D.; Shi, R.; Zhang, D.; Lu, W.; Wang, Y. Variant Selection by Dislocations during α Precipitation in α/β Titanium Alloys. Acta Mater. 2015, 88, 218–231. [Google Scholar] [CrossRef]
- Wang, S.C.; Aindow, M.; Starink, M.J. Effect of Self-Accommodation on α/α Boundary Populations in Pure Titanium. Acta Mater. 2003, 51, 2485–2503. [Google Scholar] [CrossRef]
- Farabi, E.; Tari, V.; Hodgson, P.D.; Rohrer, G.S.; Beladi, H. On the Grain Boundary Network Characteristics in a Martensitic Ti–6Al–4V Alloy. J. Mater. Sci. 2020, 55, 15299–15321. [Google Scholar] [CrossRef]
- Shi, R.; Dixit, V.; Viswanathan, G.B.; Fraser, H.L.; Wang, Y. Experimental Assessment of Variant Selection Rules for Grain Boundary α in Titanium Alloys. Acta Mater. 2016, 102, 197–211. [Google Scholar] [CrossRef]
- Shi, R.; Dixit, V.; Fraser, H.L.; Wang, Y. Variant Selection of Grain Boundary α by Special Prior β Grain Boundaries in Titanium Alloys. Acta Mater. 2014, 75, 156–166. [Google Scholar] [CrossRef]
- Stanford, N.; Bate, P.S. Crystallographic Variant Selection in Ti-6Al-4V. Acta Mater. 2004, 52, 5215–5224. [Google Scholar] [CrossRef]
- Chen, Y.; Kou, H.; Cheng, L.; Zhang, Y.; Yu, Y.; Lu, Y.; Zhu, F. Experimental Evidence of Precipitation of All 12 Variants in a Single β Grain in Titanium Alloys. Adv. Mater. Sci. Eng. 2018, 2018, 8632580. [Google Scholar] [CrossRef]
- Shi, R.; Ma, N.; Wang, Y. Predicting Equilibrium Shape of Precipitates as Function of Coherency State. Acta Mater. 2012, 60, 4172–4184. [Google Scholar] [CrossRef]
- Reisner, G.; Fischer, F.D.; Wen, Y.H.; Werner, E.A. Interaction Energy between Martensitic Variants. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1999, 30, 2583–2590. [Google Scholar] [CrossRef]
- Lee, J.K.; Aaronson, H.I. Influence of Faceting upon the Equilibrium Shape of Nuclei at Grain Boundaries-II. Three-Dimensions. Acta Metall. 1975, 23, 809–820. [Google Scholar] [CrossRef]
- Farabi, E.; Tari, V.; Hodgson, P.D.; Rohrer, G.S.; Beladi, H. The Role of Phase Transformation Mechanism on the Grain Boundary Network in a Commercially Pure Titanium. Mater. Charact. 2020, 169, 110640. [Google Scholar] [CrossRef]
- Furuhara, T.; Maki, T. Variant Selection in Heterogeneous Nucleation on Defects in Diffusional Phase Transformation and Precipitation. Mater. Sci. Eng. A 2001, 312, 145–154. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Viswanathan, G.B.; Denkenberger, R.; Furrer, D.; Fraser, H.L. The Role of Crystallographic and Geometrical Relationships between α and β Phases in an α/β Titanium Alloy. Acta Mater. 2003, 51, 4679–4691. [Google Scholar] [CrossRef]
- Lee, E.; Banerjee, R.; Kar, S.; Bhattacharyya, D.; Fraser, H.L. Selection of α Variants during Microstructural Evolution in α/β Titanium Alloys. Philos. Mag. 2007, 87, 3615–3627. [Google Scholar] [CrossRef]
- Farabi, E.; Hodgson, P.D.; Rohrer, G.S.; Beladi, H. Five-Parameter Intervariant Boundary Characterization of Martensite in Commercially Pure Titanium. Acta Mater. 2018, 154, 147–160. [Google Scholar] [CrossRef]
- van Bohemen, S.M.C.; Kamp, A.; Petrov, R.H.; Kestens, L.A.I.; Sietsma, J. Nucleation and Variant Selection of Secondary α Plates in a β Ti Alloy. Acta Mater. 2008, 56, 5907–5914. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Viswanathan, G.B.; Fraser, H.L. Crystallographic and Morphological Relationships between β Phase and the Widmanstätten and Allotriomorphic α Phase at Special β Grain Boundaries in an α/β Titanium Alloy. Acta Mater. 2007, 55, 6765–6778. [Google Scholar] [CrossRef]
- Hémery, S.; Naït-Ali, A.; Guéguen, M.; Wendorf, J.; Polonsky, A.T.; Echlin, M.P.; Stinville, J.C.; Pollock, T.M.; Villechaise, P. A 3D Analysis of the Onset of Slip Activity in Relation to the Degree of Micro-Texture in Ti–6Al–4V. Acta Mater. 2019, 181, 36–48. [Google Scholar] [CrossRef]
- Liu, J.; Wu, T.; Wang, M.; Wang, L.; Zhou, Q.; Wang, K.; Staron, P.; Schell, N.; Huber, N.; Kashaev, N. In Situ Observation of Competitive Growth of α Grains during β→α Transformation in Laser Beam Manufactured TiAl Alloys. Mater. Charact. 2021, 179, 111371. [Google Scholar] [CrossRef]
- DeMott, R.; Collins, P.; Kong, C.; Liao, X.; Ringer, S.; Primig, S. 3D Electron Backscatter Diffraction Study of α Lath Morphology in Additively Manufactured Ti-6Al-4V. Ultramicroscopy 2020, 218, 113073. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, L.; Tomé, C.N.; Mao, S.X.; Gong, S.K. Twinning and De-Twinning via Glide and Climb of Twinning Dislocations along Serrated Coherent Twin Boundaries in Hexagonal-Close-Packed Metals. Mater. Res. Lett. 2013, 1, 81–88. [Google Scholar] [CrossRef]
- Ghonem, H. Microstructure and Fatigue Crack Growth Mechanisms in High Temperature Titanium Alloys. Int. J. Fatigue 2010, 32, 1448–1460. [Google Scholar] [CrossRef]
- Daymond, M.R.; Holt, R.A.; Cai, S.; Mosbrucker, P.; Vogel, S.C. Texture Inheritance and Variant Selection through an Hcp-Bcc-Hcp Phase Transformation. Acta Mater. 2010, 58, 4053–4066. [Google Scholar] [CrossRef]
- Obasi, G.C.; Birosca, S.; Quinta Da Fonseca, J.; Preuss, M. Effect of β Grain Growth on Variant Selection and Texture Memory Effect during α→β→α Phase Transformation in Ti-6 Al-4 V. Acta Mater. 2012, 60, 1048–1058. [Google Scholar] [CrossRef]
- Gey, N.; Humbert, M.; Philippe, M.J.; Combres, Y. Modeling the Transformation Texture of Ti-64 Sheets after Rolling in the β-Field. Mater. Sci. Eng. A 1997, 230, 68–74. [Google Scholar] [CrossRef]
- Wilson, R.J.; Randle, V.; Evans, W.J. The Influence of the Burgers Relation on Crack Propagation in a near α-Titanium Alloy. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 1997, 76, 471–480. [Google Scholar] [CrossRef]
- Bache, M.R. Processing Titanium Alloys for Optimum Fatigue Performance. Int. J. Fatigue 1999, 21, 105–111. [Google Scholar] [CrossRef]
- Salib, M.; Teixeira, J.; Germain, L.; Lamielle, E.; Gey, N.; Aeby-Gautier, E. Influence of Transformation Temperature on Microtexture Formation Associated with α Precipitation at β Grain Boundaries in a β Metastable Titanium Alloy. Acta Mater. 2013, 61, 3758–3768. [Google Scholar] [CrossRef]
- Beladi, H.; Chao, Q.; Rohrer, G.S. Variant Selection and Intervariant Crystallographic Planes Distribution in Martensite in a Ti-6Al-4V Alloy. Acta Mater. 2014, 80, 478–489. [Google Scholar] [CrossRef]
- Schwartz, A.J.; King, W.E. The Potential Engineering of Grain Boundaries through Thermomechanical Processing. Jom 1998, 50, 50–55. [Google Scholar] [CrossRef]
- Palumbo, G.; Lehockey, E.M.; Lin, P. Applications for Grain Boundary Engineered Materials. Jom 1998, 50, 40–43. [Google Scholar] [CrossRef]
- Beladi, H.; Rohrer, G.S. The Role of Thermomechanical Routes on the Distribution of Grain Boundary and Interface Plane Orientations in Transformed Microstructures. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2017, 48, 2781–2790. [Google Scholar] [CrossRef]
- Dillon, S.J.; Tang, M.; Carter, W.C.; Harmer, M.P. Complexion: A New Concept for Kinetic Engineering in Materials Science. Acta Mater. 2007, 55, 6208–6218. [Google Scholar] [CrossRef]
- Dai, J.; Xia, J.; Chai, L.; Murty, K.L.; Guo, N.; Daymond, M.R. Correlation of Microstructural, Textural Characteristics and Hardness of Ti–6Al–4V Sheet β-Cooled at Different Rates. J. Mater. Sci. 2020, 55, 8346–8362. [Google Scholar] [CrossRef]
- Zhang, M.X.; Kelly, P.M. Crystallographic Features of Phase Transformations in Solids. Prog. Mater. Sci. 2009, 54, 1101–1170. [Google Scholar] [CrossRef]
- Lütjering, G. Influence of Processing on Microstructure and Mechanical Properties of (α + β) Titanium Alloys. Mater. Sci. Eng. A 1998, 243, 32–45. [Google Scholar] [CrossRef]
- Ackerman, A.K.; Knowles, A.J.; Gardner, H.M.; Németh, A.A.N.; Bantounas, I.; Radecka, A.; Moody, M.P.; Bagot, P.A.J.; Reed, R.C.; Rugg, D.; et al. The Kinetics of Primary Alpha Plate Growth in Titanium Alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 131–141. [Google Scholar] [CrossRef]
- Karthikeyan, T.; Dasgupta, A.; Khatirkar, R.; Saroja, S.; Samajdar, I.; Vijayalakshmi, M. Effect of Cooling Rate on Transformation Texture and Variant Selection during Β→α Transformation in Ti-5Ta-1.8Nb Alloy. Mater. Sci. Eng. A 2010, 528, 549–558. [Google Scholar] [CrossRef]
- Christian, J.W. Theory of Transformations in Metals and Alloys, 1st ed.; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Gadeev, D.V.; Illarionov, A.G. Determination of Beta-Transus Temperature of Two-Phase Titanium Alloys Using Differential Scanning Calorimetry. Solid State Phenom. 2018, 284, 259–264. [Google Scholar] [CrossRef]
- Nemirovskiy, Y.R.; Nemirovskiy, M.R. Matrices of orientation relationships in course of phase transformations and twining. Zavod. Lab.—Ind. Lab. 1975, 41, 1347–1353. [Google Scholar]
- Popov, V.V.; Lobanov, M.L.; Stepanov, S.I.; Qi, Y.; Muller-Kamskii, G.; Popova, E.N.; Katz-Demyanetz, A.; Popov, A.A. Texturing and Phase Evolution in Ti-6al-4v: Effect of Electron Beam Melting Process, Powder Re-Using, and Hip Treatment. Materials 2021, 14, 4473. [Google Scholar] [CrossRef]
Section No. | α1/α2 Misorientation | BOR Deviation α1/β | BOR Deviation α2/β |
---|---|---|---|
1 | 67° | 0° | 34° |
2 | 48° | 34° | 29° |
3 | 3° | 29° | 29° |
4 | 3° | 0° | 0° |
5 | 61° | 0° | 0° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naschetnikova, I.A.; Stepanov, S.I.; Redikultsev, A.A.; Yarkov, V.Y.; Zorina, M.A.; Lobanov, M.L. Crystallographic Features of Phase Transformations during the Continuous Cooling of a Ti6Al4V Alloy from the Single-Phase β-Region. Materials 2022, 15, 5840. https://doi.org/10.3390/ma15175840
Naschetnikova IA, Stepanov SI, Redikultsev AA, Yarkov VY, Zorina MA, Lobanov ML. Crystallographic Features of Phase Transformations during the Continuous Cooling of a Ti6Al4V Alloy from the Single-Phase β-Region. Materials. 2022; 15(17):5840. https://doi.org/10.3390/ma15175840
Chicago/Turabian StyleNaschetnikova, Inna A., Stepan I. Stepanov, Andrey A. Redikultsev, Valentin Yu. Yarkov, Maria A. Zorina, and Mikhail L. Lobanov. 2022. "Crystallographic Features of Phase Transformations during the Continuous Cooling of a Ti6Al4V Alloy from the Single-Phase β-Region" Materials 15, no. 17: 5840. https://doi.org/10.3390/ma15175840
APA StyleNaschetnikova, I. A., Stepanov, S. I., Redikultsev, A. A., Yarkov, V. Y., Zorina, M. A., & Lobanov, M. L. (2022). Crystallographic Features of Phase Transformations during the Continuous Cooling of a Ti6Al4V Alloy from the Single-Phase β-Region. Materials, 15(17), 5840. https://doi.org/10.3390/ma15175840