Martensitic Transformation Temperatures and Hall Effect in Ni47−xMn41+xIn12 (x = 0, 1, 2) Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tavares, S.; Yang, K.; Meyers, M.A. Heusler alloys: Past, properties, new alloys, and prospects. Prog. Mater. Sci. 2023, 132, 101017. [Google Scholar] [CrossRef]
- Katsnelson, M.I.; Irkhin, V.Y.; Chioncel, L.; Lichtenstein, A.I.; De Groot, R.A. Half-metallic ferromagnets: From band structure to many-body effects. Rev. Mod. Phys. 2008, 80, 315–378. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, T.; Cheng, Z.; Wang, X.-L.; Chen, H. Recent advances in Dirac spin-gapless semiconductors. Appl. Phys. Rev. 2018, 5, 041103. [Google Scholar] [CrossRef] [Green Version]
- Manna, K.; Sun, Y.; Muechler, L.; Kübler, J.; Felser, C. Heusler, Weyl and Berry. Nat. Rev. Mater. 2018, 3, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Marchenkov, V.V.; Irkhin, V.Y. Half-metallic ferromagnets, spin gapless semiconductors and topological semimetals based on Heusler alloys: Theory and experiment. Phys. Met. Metallogr. 2021, 122, 1133–1157. [Google Scholar] [CrossRef]
- Marchenkov, V.V.; Irkhin, V.Y.; Semiannikova, A.A. Unusual kinetic properties of usual Heusler alloys. J. Supercond. Nov. Magn. 2022, 35, 2153–2168. [Google Scholar] [CrossRef]
- Zhu, H.; He, R.; Mao, J.; Zhu, Q.; Li, C.; Sun, J.; Ren, W.; Wang, Y.; Liu, Z.; Tang, Z.; et al. Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nat. Commun. 2018, 9, 2497. [Google Scholar] [CrossRef]
- Berche, A.; Jund, P. Fully Ab-Inito determination of the thermoelectric properties of half-Heusler NiTiSn: Crucial role of interstitial Ni defects. Materials 2018, 11, 868. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Mao, J.; Li, Y.; Sun, J.; Wang, Y.; Zhu, Q.; Li, G.; Song, Q.; Zhou, J.; Fu, Y.; et al. Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat. Commun. 2019, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Pushin, V.; Korolyov, A.; Kuranova, N.; Marchenkova, E.; Ustyugov, Y. New Metastable Baro-and Deformation-Induced Phases in Ferromagnetic Shape Memory Ni2MnGa-Based Alloys. Materials 2022, 115, 2277. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Ghomashchi, R.; Xie, Z.; Chen, L. Ferromagnetic shape memory Heusler materials: Synthesis, microstructure characterization and magnetostructural properties. Materials 2018, 11, 988. [Google Scholar] [CrossRef] [Green Version]
- Kuchin, D.S.; Dilmieva, E.T.; Koshkid’ko, Y.S.; Kamantsev, A.P.; Koledov, V.V.; Mashirov, A.V.; Shavrov, V.G.; Cwik, J.; Rogacki, K.; Khovaylo, V.V. Direct measurement of shape memory effect for Ni54Mn21Ga25, Ni50Mn41.2In8.8 Heusler alloys in high magnetic field. J. Magn. Magn. Mater. 2019, 482, 317–322. [Google Scholar] [CrossRef]
- Qiao, K.; Liang, Y.; Zuo, S.; Zhang, C.; Yu, Z.; Long, Y.; Hu, F.; Shen, B.; Zhang, H. Regulation of Magnetocaloric Effect in Ni40Co10Mn40Sn10 Alloys by Using a Homemade Uniaxial Strain Pressure Cell. Materials 2022, 15, 4331. [Google Scholar] [CrossRef]
- Krenke, T.; Duman, E.; Acet, M.; Wassermann, E.F.; Moya, X.; Mañosa, L.; Planes, A.; Suard, E.; Ouladdiaf, B. Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In. Phys. Rev. B 2007, 75, 104414. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, Y.; Yao, Y.; Xu, J.; Han, Z.; Fang, Y.; Zhang, L.; Zhang, C.; Qian, B.; Jiang, X. Effect of Ti doping on the phase transitions, magnetocaloric effect and exchange bias in Ni43Mn46Sn11−xTix Heusler alloys. J. Magn. Magn. Mater. 2020, 498, 166216. [Google Scholar] [CrossRef]
- Guha, S.; Datta, S.; Panda, S.K.; Kar, M. Room temperature magneto-caloric effect and electron transport properties study on Ni2.14Mn0.55Sb1.31 alloy. J. Alloys Compd. 2020, 843, 156033. [Google Scholar] [CrossRef]
- Sharma, V.K.; Chattopadhyay, M.K.; Kumar, R.; Ganguli, T.; Tiwari, P.; Roy, S.B. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. J. Phys. Condens. Matter 2007, 19, 496207. [Google Scholar] [CrossRef]
- Han, Z.D.; Wang, D.H.; Zhang, C.L.; Xuan, H.C.; Zhang, J.R.; Gu, B.X.; Du, Y.W. Effect of lattice contraction on martensitic transformation and magnetocaloric effect in Ge doped Ni-Mn-Sn alloys. Mater. Sci. Eng. B 2009, 157, 40–43. [Google Scholar] [CrossRef]
- Chernenko, V.A. Compositional instability of β-phase in Ni-Mn-Ga alloys. Scr. Mater. 1999, 40, 523–527. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhang, M.; Wang, W.Q.; Wang, W.H.; Chen, J.L.; Wu, G.H.; Meng, F.B.; Liu, H.Y.; Liu, B.D.; Qu, J.P.; et al. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa. J. Appl. Phys. 2002, 92, 5006–5010. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Z.; Yang, H.; Liu, Y.; Liu, E.; Zhang, H.; Wu, G. Thermal and stress-induced martensitic transformations in quaternary Ni50Mn37(In,Sb)13 ferromagnetic shape memory alloys. Intermetallics 2010, 18, 1690–1694. [Google Scholar] [CrossRef]
- Gao, B.; Shen, J.; Hu, F.X.; Wang, J.; Sun, J.R.; Shen, B.G. Magnetic properties and magnetic entropy change in Heusler alloys Ni50Mn35−xCuxSn15. Appl. Phys. A 2009, 97, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Kanomata, T.; Nozawa, T.; Kikuchi, D.; Nishihara, H.; Koyama, K.; Watanabe, K. Magnetic properties of ferromagnetic shape memory alloys Ni2−xCuxMnGa. Int. J. Appl. Electromagn. Mech. 2005, 21, 151–157. [Google Scholar] [CrossRef]
- Wang, R.L.; Yan, J.B.; Xiao, H.B.; Xu, L.S.; Marchenkov, V.V.; Xu, L.F.; Yang, C.P. Effect of electron density on the martensitic transition in Ni–Mn–Sn alloys. J. Alloys Compd. 2011, 509, 6834–6837. [Google Scholar] [CrossRef]
- Aksoy, S.; Acet, M.; Wassermann, E.F.; Krenke, T.; Moya, X.; Mañosa, L.; Planes, A.; Deen, P.P. Structural properties and magnetic interactions in martensitic Ni-Mn-Sb alloys. Philos. Mag. 2009, 89, 2093–2109. [Google Scholar] [CrossRef] [Green Version]
- Novikov, A.; Gan’shina, E.; Granovsky, A.; Zhukov, A.; Chernenko, V. Magneto-optical spectroscopy of Heusler alloys: Bulk samples, thin films and microwires. Solid State Phenom. 2012, 190, 335–338. [Google Scholar] [CrossRef]
- Kudruavtsev, Y.V.; Perekos, A.E.; Melnik, A.K.; Skirta, Y.B. Effect of crystalline structure on some physical properties of bulk and thin film Ni50Mn35In15 alloy samples. Met. Adv. Technol. 2019, 41, 1549–1566. [Google Scholar] [CrossRef]
- Jiráskova, Y.; Buršík, J.; Janičkovič, D.; Životský, O. Influence of preparation technology on microstructural and magnetic properties of Fe2MnSi and Fe2MnAl Heusler alloys. Materials 2019, 12, 710. [Google Scholar] [CrossRef] [Green Version]
- Kazakov, A.P.; Prudnikov, V.N.; Granovsky, A.B.; Zhukov, A.P.; Gonzalez, J.; Dubenko, I.; Pathak, A.K.; Stadler, S.; Ali, N. Direct measurements of field-induced adiabatic temperature changes near compound phase transitions in Ni-Mn-In based Heusler alloys. Appl. Phys. Lett. 2011, 98, 131911. [Google Scholar] [CrossRef] [Green Version]
- Pathak, A.K.; Khan, M.; Dubenko, I.; Stadler, S.; Ali, N. Large magnetic entropy change in Ni50Mn50−xInx Heusler alloys. Appl. Phys. Lett. 2007, 90, 262504. [Google Scholar] [CrossRef]
- Pathak, A.K.; Dubenko, I.; Stadler, S.; Ali, N. The effect of partial substitution of In by Si on the phase transitions and respective magnetic entropy changes of Ni50Mn35In15 Heusler alloy. J. Phys. D Appl. Phys. 2008, 41, 202004. [Google Scholar] [CrossRef]
- Dubenko, I.; Pathak, A.K.; Stadler, S.; Ali, N.; Kovarskii, Y.; Prudnikov, V.N.; Perov, N.S.; Granovsky, A.B. Giant Hall effect in Ni-Mn-In Heusler alloys. Phys. Rev. B 2009, 80, 092408. [Google Scholar] [CrossRef]
- Granovskii, A.B.; Prudnikov, V.N.; Kazakov, A.P.; Zhukov, A.P.; Dubenko, I.S. Determination of the normal and anomalous Hall effect coefficients in ferromagnetic Ni50Mn35In15−xSix Heusler alloys at the martensitic transformation. J. Exp. Theor. Phys. 2012, 115, 805–814. [Google Scholar] [CrossRef]
- Dubenko, I.; Pathak, A.K.; Ali, N.; Kovarskii, Y.; Prudnikov, V.N.; Perov, N.S.; Granovsky, A.B. Magnetotransport properties of Ni-Mn-In Heusler alloys: Giant Hall angle. J. Phys. Conf. Ser. 2010, 200, 052005. [Google Scholar] [CrossRef]
- Prudnikov, V.N.; Kazakov, A.P.; Titov, I.S.; Perov, N.S.; Granovskii, A.B.; Dubenko, I.S.; Pathak, A.K.; Ali, N.; Zhukov, A.P.; Gonzalez, J. Hall effect in a martensitic transformation in Ni-Co-Mn-In Heusler alloys. JEPT Lett. 2010, 92, 666–670. [Google Scholar] [CrossRef]
- Marchenkov, V.V.; Emelyanova, S.M. Low-temperature Hall effect and martensitic transition temperatures in magnetocaloric Ni50Mn35Sb15−xGex (x = 0, 1, 3) alloys. Low Temp. Phys. 2021, 47, 55–60. [Google Scholar] [CrossRef]
- González-Legarreta, L.; González-Alonso, D.; Rosa, W.O.; Caballero-Flores, R.; Suñol, J.J.; González, J.; Hernando, B. Magnetostructural phase transition in off-stoichiometric Ni–Mn–In Heusler alloy ribbons with low In content. J. Magn. Magn. Mater. 2015, 383, 190–195. [Google Scholar] [CrossRef]
- Sharma, V.K.; Chattopadhyay, M.K.; Shaeb, K.H.B.; Chouhan, A.; Roy, S.B. Large magnetoresistance in Ni50Mn34In16 alloy. Appl. Phys. Lett. 2006, 89, 222509. [Google Scholar] [CrossRef]
- Vasiliev, A.N.; Heczko, O.; Volkova, O.S.; Vasilchikova, T.N.; Voloshok, T.N.; Klimov, K.V.; Ito, W.; Kainuma, R.; Ishida, K.; Oikawa, K.; et al. On the electronic origin of the inverse magnetocaloric effect in Ni-Co-Mn-In Heusler alloys. J. Phys. D Appl. Phys. 2010, 43, 055004. [Google Scholar] [CrossRef]
- Wang, B.M.; Wang, L.; Liu, Y.; Zhao, B.C.; Zhao, Y.; Yang, Y.; Zhang, H. Strong thermal-history-dependent magnetoresistance behavior in Ni49,5Mn34,5In16. J. Appl. Phys. 2009, 106, 063909. [Google Scholar] [CrossRef]
- Kuranova, N.N.; Pushin, A.V.; Uksusnikov, A.N.; Belosludtseva, E.S.; Kourov, N.I.; Kuntsevich, T.E.; Pushin, V.G. Fine structure and mechanical properties of the shape-memory Ni50Ti32Hf18 alloy rapidly quenched by spinning. Tech. Phys. 2017, 62, 1189–1193. [Google Scholar] [CrossRef]
- Bao, B.; Long, Y.; Duan, J.F.; Shi, P.J.; Wu, G.H.; Ye, R.C.; Chang, Y.Q.; Zhang, J.; Rong, C.B. Phase transition processes and magnetocaloric effect in Ni2.15Mn0.85−xCoxGa alloys. J. Appl. Phys. 2008, 103, 07B335. [Google Scholar] [CrossRef]
- Vasil’ev, A.N.; Bozhko, A.D.; Khovailo, V.V.; Dikshtein, I.E.; Shavrov, V.G.; Buchelnikov, V.D.; Matsumoto, M.; Suzuki, S.; Takagi, T.; Tani, J. Structural and magnetic phase transitions in shape-memory alloys Ni2+xMn1−xGa. Phys. Rev. B 1999, 59, 1113–1120. [Google Scholar] [CrossRef]
- Wang, W.H.; Hu, F.X.; Chen, J.L.; Li, Y.X.; Wang, Z.; Gao, Z.Y.; Zheng, Y.F.; Zhao, L.C.; Wu, G.H.; Zan, W.S. Magnetic properties and structural phase transformations of NiMnGa alloys. IEEE Trans. Magn. 2001, 37, 2715–2717. [Google Scholar] [CrossRef]
- Krenke, T.; Acet, M.; Wassermann, E.F.; Moya, X.; Mañosa, L.; Planes, A. Magnetic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. Phys. Rev. B 2005, 72, 014412. [Google Scholar] [CrossRef] [Green Version]
- Gonzàlez-Comas, A.; Obradó, E.; Mañosa, L.; Planes, A.; Chernenko, V.A.; Hattink, B.J.; Labarta, A. Premartensitic and martensitic phase transitions in ferromagnetic Ni2MnGa. Phys. Rev. B 1999, 60, 7085–7090. [Google Scholar] [CrossRef] [Green Version]
- Marchenkov, V.V.; Irkhin, V.Y.; Perevozchikova, Y.A.; Terent’ev, P.B.; Semiannikova, A.A.; Marchenkobva, E.B.; Eisterer, M. Kinetic properties and half-metallic magnetism in Mn2YAl Heusler alloys. J. Exp. Theor. Phys. 2019, 128, 919–925. [Google Scholar] [CrossRef]
- Marchenkov, V.V.; Kourov, N.I.; Irkhin, V.Y. Half-metallic ferromagnets and spin gapless semiconductors. Phys. Met. Metallogr. 2018, 119, 1321–1324. [Google Scholar] [CrossRef] [Green Version]
- Lifshits, I.M.; Azbel, M.Y.; Kaganov, M.I. Electron Theory of Metals; Consultants Bureau: New York, NY, USA, 1973; pp. 109–125. [Google Scholar]
- Chen, H.; Wang, Y.-D.; Nie, Z.; Li, R.; Cong, D.; Liu, W.; Ye, F.; Liu, Y.; Cao, P.; Tian, F.; et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 2020, 19, 712–718. [Google Scholar] [CrossRef]
Alloy | Content of Phases, at.% | |
---|---|---|
Cubic (A) | Tetragonal (M) | |
Ni45Mn43In12 | 34.1 | 65.9 |
Ni46Mn42In12 | 36.9 | 63.1 |
Ni47Mn41In12 | 39.5 | 60.5 |
Alloy | Content of Each Element, at.% | ||
---|---|---|---|
Ni | Mn | In | |
Ni45Mn43In12 | 45.21 | 42.75 | 12.04 |
Ni46Mn42In12 | 46.11 | 41.71 | 12.18 |
Ni47Mn41In12 | 46.58 | 41.17 | 12.25 |
Alloy | As, K | Af, K | Ms, K | Mf, K |
---|---|---|---|---|
According to the temperature dependences of electrical resistivity ρ(T) | ||||
Ni45Mn43In12 | 175 | 275 | 265 | 148 |
Ni46Mn42In12 | 260 | 317 | 308 | 250 |
Ni47Mn41In12 | 305 | 323 | 315 | 298 |
According to the temperature dependences of magnetization M(T) | ||||
Ni45Mn43In12 | 170 | 265 | 258 | 148 |
Ni46Mn42In12 | 263 | 310 | 307 | 252 |
Ni47Mn41In12 | 308 | 318 | 317 | 302 |
Alloy | e/a | R0, 10−5 cm3/C | RS, 10−2 cm3/C | n, 1023 1/cm3 |
---|---|---|---|---|
Ni45Mn43In12 | 7.87 | −2.01 | 1.66 | 3.11 |
Ni46Mn42In12 | 7.9 | −1.69 | 2.19 | 3.69 |
Ni47Mn41In12 | 7.93 | −1.48 | 3.73 | 4.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchenkov, V.V.; Emelyanova, S.M.; Marchenkova, E.B. Martensitic Transformation Temperatures and Hall Effect in Ni47−xMn41+xIn12 (x = 0, 1, 2) Alloys. Materials 2023, 16, 672. https://doi.org/10.3390/ma16020672
Marchenkov VV, Emelyanova SM, Marchenkova EB. Martensitic Transformation Temperatures and Hall Effect in Ni47−xMn41+xIn12 (x = 0, 1, 2) Alloys. Materials. 2023; 16(2):672. https://doi.org/10.3390/ma16020672
Chicago/Turabian StyleMarchenkov, Vyacheslav V., Sabina M. Emelyanova, and Elena B. Marchenkova. 2023. "Martensitic Transformation Temperatures and Hall Effect in Ni47−xMn41+xIn12 (x = 0, 1, 2) Alloys" Materials 16, no. 2: 672. https://doi.org/10.3390/ma16020672
APA StyleMarchenkov, V. V., Emelyanova, S. M., & Marchenkova, E. B. (2023). Martensitic Transformation Temperatures and Hall Effect in Ni47−xMn41+xIn12 (x = 0, 1, 2) Alloys. Materials, 16(2), 672. https://doi.org/10.3390/ma16020672